Computational-Statistical Trade-off in Kernel Two-Sample Testing with Random Fourier Features
- URL: http://arxiv.org/abs/2407.08976v1
- Date: Fri, 12 Jul 2024 04:08:01 GMT
- Title: Computational-Statistical Trade-off in Kernel Two-Sample Testing with Random Fourier Features
- Authors: Ikjun Choi, Ilmun Kim,
- Abstract summary: The Maximum Mean Discrepancy (MMD) test has emerged as an effective tool for handling complex and high-dimensional data.
It has been unclear whether it is possible to attain the same power guarantee as the MMD test at sub-quadratic time cost.
We show that it is possible to attain the same minimax separation rates as the MMD test within sub-quadratic time.
- Score: 3.744589644319257
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent years have seen a surge in methods for two-sample testing, among which the Maximum Mean Discrepancy (MMD) test has emerged as an effective tool for handling complex and high-dimensional data. Despite its success and widespread adoption, the primary limitation of the MMD test has been its quadratic-time complexity, which poses challenges for large-scale analysis. While various approaches have been proposed to expedite the procedure, it has been unclear whether it is possible to attain the same power guarantee as the MMD test at sub-quadratic time cost. To fill this gap, we revisit the approximated MMD test using random Fourier features, and investigate its computational-statistical trade-off. We start by revealing that the approximated MMD test is pointwise consistent in power only when the number of random features approaches infinity. We then consider the uniform power of the test and study the time-power trade-off under the minimax testing framework. Our result shows that, by carefully choosing the number of random features, it is possible to attain the same minimax separation rates as the MMD test within sub-quadratic time. We demonstrate this point under different distributional assumptions such as densities in a Sobolev ball. Our theoretical findings are corroborated by simulation studies.
Related papers
- Near-Optimal Learning and Planning in Separated Latent MDPs [70.88315649628251]
We study computational and statistical aspects of learning Latent Markov Decision Processes (LMDPs)
In this model, the learner interacts with an MDP drawn at the beginning of each epoch from an unknown mixture of MDPs.
arXiv Detail & Related papers (2024-06-12T06:41:47Z) - Precise Error Rates for Computationally Efficient Testing [75.63895690909241]
We revisit the question of simple-versus-simple hypothesis testing with an eye towards computational complexity.
An existing test based on linear spectral statistics achieves the best possible tradeoff curve between type I and type II error rates.
arXiv Detail & Related papers (2023-11-01T04:41:16Z) - SMURF-THP: Score Matching-based UnceRtainty quantiFication for
Transformer Hawkes Process [76.98721879039559]
We propose SMURF-THP, a score-based method for learning Transformer Hawkes process and quantifying prediction uncertainty.
Specifically, SMURF-THP learns the score function of events' arrival time based on a score-matching objective.
We conduct extensive experiments in both event type prediction and uncertainty quantification of arrival time.
arXiv Detail & Related papers (2023-10-25T03:33:45Z) - Partial identification of kernel based two sample tests with mismeasured
data [5.076419064097733]
Two-sample tests such as the Maximum Mean Discrepancy (MMD) are often used to detect differences between two distributions in machine learning applications.
We study the estimation of the MMD under $epsilon$-contamination, where a possibly non-random $epsilon$ proportion of one distribution is erroneously grouped with the other.
We propose a method to estimate these bounds, and show that it gives estimates that converge to the sharpest possible bounds on the MMD as sample size increases.
arXiv Detail & Related papers (2023-08-07T13:21:58Z) - Boosting the Power of Kernel Two-Sample Tests [4.07125466598411]
A kernel two-sample test based on the maximum mean discrepancy (MMD) is one of the most popular methods for detecting differences between two distributions over general metric spaces.
We propose a method to boost the power of the kernel test by combining MMD estimates over multiple kernels using their Mahalanobis distance.
arXiv Detail & Related papers (2023-02-21T14:14:30Z) - Spectral Regularized Kernel Two-Sample Tests [7.915420897195129]
We show the popular MMD (maximum mean discrepancy) two-sample test to be not optimal in terms of the separation boundary measured in Hellinger distance.
We propose a modification to the MMD test based on spectral regularization and prove the proposed test to be minimax optimal with a smaller separation boundary than that achieved by the MMD test.
Our results hold for the permutation variant of the test where the test threshold is chosen elegantly through the permutation of the samples.
arXiv Detail & Related papers (2022-12-19T00:42:21Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - A Permutation-free Kernel Two-Sample Test [36.50719125230106]
We propose a new quadratic-time MMD test statistic based on sample-splitting and studentization.
For large sample sizes, our new cross-MMD provides a significant speedup over the MMD, for only a slight loss in power.
arXiv Detail & Related papers (2022-11-27T18:15:52Z) - Efficient Aggregated Kernel Tests using Incomplete $U$-statistics [22.251118308736327]
Three proposed tests aggregate over several kernel bandwidths to detect departures from the null on various scales.
We show that our proposed linear-time aggregated tests obtain higher power than current state-of-the-art linear-time kernel tests.
arXiv Detail & Related papers (2022-06-18T12:30:06Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
Conditional local independence is an independence relation among continuous time processes.
No nonparametric test of conditional local independence has been available.
We propose such a nonparametric test based on double machine learning.
arXiv Detail & Related papers (2022-03-25T10:31:02Z) - Maximum Mean Discrepancy Test is Aware of Adversarial Attacks [122.51040127438324]
The maximum mean discrepancy (MMD) test could in principle detect any distributional discrepancy between two datasets.
It has been shown that the MMD test is unaware of adversarial attacks.
arXiv Detail & Related papers (2020-10-22T03:42:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.