CURE: Privacy-Preserving Split Learning Done Right
- URL: http://arxiv.org/abs/2407.08977v1
- Date: Fri, 12 Jul 2024 04:10:19 GMT
- Title: CURE: Privacy-Preserving Split Learning Done Right
- Authors: Halil Ibrahim Kanpak, Aqsa Shabbir, Esra Genç, Alptekin Küpçü, Sinem Sav,
- Abstract summary: Homomorphic encryption (HE)-based solutions exist for this scenario but often impose prohibitive computational burdens.
CURE is a novel system that encrypts only the server side of the model and the data.
We demonstrate CURE can achieve similar accuracy to plaintext SL while being 16x more efficient in terms of the runtime.
- Score: 1.388112207221632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training deep neural networks often requires large-scale datasets, necessitating storage and processing on cloud servers due to computational constraints. The procedures must follow strict privacy regulations in domains like healthcare. Split Learning (SL), a framework that divides model layers between client(s) and server(s), is widely adopted for distributed model training. While Split Learning reduces privacy risks by limiting server access to the full parameter set, previous research has identified that intermediate outputs exchanged between server and client can compromise client's data privacy. Homomorphic encryption (HE)-based solutions exist for this scenario but often impose prohibitive computational burdens. To address these challenges, we propose CURE, a novel system based on HE, that encrypts only the server side of the model and optionally the data. CURE enables secure SL while substantially improving communication and parallelization through advanced packing techniques. We propose two packing schemes that consume one HE level for one-layer networks and generalize our solutions to n-layer neural networks. We demonstrate that CURE can achieve similar accuracy to plaintext SL while being 16x more efficient in terms of the runtime compared to the state-of-the-art privacy-preserving alternatives.
Related papers
- ACCESS-FL: Agile Communication and Computation for Efficient Secure Aggregation in Stable Federated Learning Networks [26.002975401820887]
Federated Learning (FL) is a distributed learning framework designed for privacy-aware applications.
Traditional FL approaches risk exposing sensitive client data when plain model updates are transmitted to the server.
Google's Secure Aggregation (SecAgg) protocol addresses this threat by employing a double-masking technique.
We propose ACCESS-FL, a communication-and-computation-efficient secure aggregation method.
arXiv Detail & Related papers (2024-09-03T09:03:38Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
Federated learning (FL) has recently gained significant momentum due to its potential to leverage large-scale distributed user data.
The transmitted model updates can potentially leak sensitive user information, and the lack of central control of the local training process leaves the global model susceptible to malicious manipulations on model updates.
We develop a general framework PriRoAgg, utilizing Lagrange coded computing and distributed zero-knowledge proof, to execute a wide range of robust aggregation algorithms while satisfying aggregated privacy.
arXiv Detail & Related papers (2024-07-12T03:18:08Z) - Safely Learning with Private Data: A Federated Learning Framework for Large Language Model [3.1077263218029105]
Federated learning (FL) is an ideal solution for training models with distributed private data.
Traditional frameworks like FedAvg are unsuitable for large language models (LLM)
We propose FL-GLM, which prevents data leakage caused by both server-side and peer-client attacks.
arXiv Detail & Related papers (2024-06-21T06:43:15Z) - Boosting Communication Efficiency of Federated Learning's Secure Aggregation [22.943966056320424]
Federated Learning (FL) is a decentralized machine learning approach where client devices train models locally and send them to a server.
FL is vulnerable to model inversion attacks, where the server can infer sensitive client data from trained models.
Google's Secure Aggregation (SecAgg) protocol addresses this data privacy issue by masking each client's trained model.
This poster introduces a Communication-Efficient Secure Aggregation (CESA) protocol that substantially reduces this overhead.
arXiv Detail & Related papers (2024-05-02T10:00:16Z) - Love or Hate? Share or Split? Privacy-Preserving Training Using Split
Learning and Homomorphic Encryption [47.86010265348072]
Split learning (SL) is a new collaborative learning technique that allows participants to train machine learning models without the client sharing raw data.
Previous works demonstrated that reconstructing activation maps could result in privacy leakage of client data.
In this paper, we improve upon previous works by constructing a protocol based on U-shaped SL that can operate on homomorphically encrypted data.
arXiv Detail & Related papers (2023-09-19T10:56:08Z) - Split Without a Leak: Reducing Privacy Leakage in Split Learning [3.2066885499201176]
We propose a hybrid approach using Split Learning (SL) and Homomorphic Encryption (HE)
On the MIT-BIH dataset, our proposed hybrid approach using SL and HE yields faster training time (about 6 times) and significantly reduced communication overhead (almost 160 times) compared to other HE-based approaches.
arXiv Detail & Related papers (2023-08-30T06:28:42Z) - Subspace based Federated Unlearning [75.90552823500633]
Federated unlearning (FL) aims to remove a specified target client's contribution in FL to satisfy the user's right to be forgotten.
Most existing federated unlearning algorithms require the server to store the history of the parameter updates.
We propose a simple-yet-effective subspace based federated unlearning method, dubbed SFU, that lets the global model perform gradient ascent.
arXiv Detail & Related papers (2023-02-24T04:29:44Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Optimizing Server-side Aggregation For Robust Federated Learning via
Subspace Training [80.03567604524268]
Non-IID data distribution across clients and poisoning attacks are two main challenges in real-world federated learning systems.
We propose SmartFL, a generic approach that optimize the server-side aggregation process.
We provide theoretical analyses of the convergence and generalization capacity for SmartFL.
arXiv Detail & Related papers (2022-11-10T13:20:56Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
We present a framework for privacy-preserving inference of sum-product networks (SPNs)
CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.
arXiv Detail & Related papers (2020-02-03T14:49:18Z) - Secure Summation via Subset Sums: A New Primitive for Privacy-Preserving
Distributed Machine Learning [15.275126264550943]
Summation is an important primitive for computing means, counts or mini-batch gradients.
In many cases, the data is privacy-sensitive and cannot be collected on a central server.
Existing solutions for distributed summation with computational privacy guarantees make trust or connection assumptions that might not be fulfilled in real world settings.
We propose Secure Summation via Subset Sums (S5), a method for distributed summation that works in the presence of a malicious server and only two honest clients.
arXiv Detail & Related papers (2019-06-27T23:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.