論文の概要: AUITestAgent: Automatic Requirements Oriented GUI Function Testing
- arxiv url: http://arxiv.org/abs/2407.09018v1
- Date: Fri, 12 Jul 2024 06:14:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 00:36:46.045641
- Title: AUITestAgent: Automatic Requirements Oriented GUI Function Testing
- Title(参考訳): AUITestAgent: 自動要件指向GUI機能テスト
- Authors: Yongxiang Hu, Xuan Wang, Yingchuan Wang, Yu Zhang, Shiyu Guo, Chaoyi Chen, Xin Wang, Yangfan Zhou,
- Abstract要約: 本稿では,モバイルアプリ用の初の自動自然言語駆動GUIテストツールであるAUITestAgentを紹介する。
GUIインタラクションと機能検証の全プロセスを完全に自動化することができる。
カスタマイズされたベンチマークの実験では、AUITestAgentが生成されたGUIインタラクションの品質で既存のツールより優れていることが示されている。
- 参考スコア(独自算出の注目度): 12.83932274541321
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Graphical User Interface (GUI) is how users interact with mobile apps. To ensure it functions properly, testing engineers have to make sure it functions as intended, based on test requirements that are typically written in natural language. While widely adopted manual testing and script-based methods are effective, they demand substantial effort due to the vast number of GUI pages and rapid iterations in modern mobile apps. This paper introduces AUITestAgent, the first automatic, natural language-driven GUI testing tool for mobile apps, capable of fully automating the entire process of GUI interaction and function verification. Since test requirements typically contain interaction commands and verification oracles. AUITestAgent can extract GUI interactions from test requirements via dynamically organized agents. Then, AUITestAgent employs a multi-dimensional data extraction strategy to retrieve data relevant to the test requirements from the interaction trace and perform verification. Experiments on customized benchmarks demonstrate that AUITestAgent outperforms existing tools in the quality of generated GUI interactions and achieved the accuracy of verifications of 94%. Moreover, field deployment in Meituan has shown AUITestAgent's practical usability, with it detecting 4 new functional bugs during 10 regression tests in two months.
- Abstract(参考訳): Graphical User Interface (GUI)は、ユーザがモバイルアプリと対話する方法である。
適切に機能するためには、テストエンジニアは、通常自然言語で書かれたテスト要件に基づいて、意図した通りに機能するようにする必要がある。
広く採用されている手動テストとスクリプトベースの手法は有効であるが、モダンなモバイルアプリではGUIページの多さと迅速なイテレーションのため、かなりの努力を要する。
本稿では,モバイル向け初の自動自然言語駆動型GUIテストツールであるAUITestAgentについて紹介する。
テスト要件は通常、インタラクションコマンドと検証オラクルを含む。
AUITestAgentは動的に整理されたエージェントを介してテスト要件からGUIインタラクションを抽出できる。
次に、AUITestAgentは多次元データ抽出戦略を使用して、インタラクショントレースからテスト要件に関連するデータを検索し、検証を行う。
カスタマイズされたベンチマークの実験では、AUITestAgentは生成されたGUIインタラクションの品質で既存のツールよりも優れており、検証の精度は94%に達した。
さらに、Meituanのフィールドデプロイメントでは、AUITestAgentの実用的ユーザビリティが示されており、2ヶ月で10回の回帰テスト中に4つの新しい機能バグを検出する。
関連論文リスト
- ShowUI: One Vision-Language-Action Model for GUI Visual Agent [80.50062396585004]
グラフィカルユーザインタフェース(GUI)アシスタントの構築は、人間のワークフロー生産性を向上させるための大きな約束である。
デジタルワールドにおける視覚言語アクションモデル、すなわちShowUIを開発し、以下のイノベーションを特徴とする。
256Kデータを使用した軽量な2BモデルであるShowUIは、ゼロショットのスクリーンショットグラウンドで75.1%の精度を実現している。
論文 参考訳(メタデータ) (2024-11-26T14:29:47Z) - GUICourse: From General Vision Language Models to Versatile GUI Agents [75.5150601913659]
GUICourseは、ビジュアルベースのGUIエージェントをトレーニングするためのデータセットスイートです。
まず、OCRとVLMのグラウンド機能を強化するためにGUIEnvデータセットを導入する。
次にGUIActとGUIChatデータセットを導入し、GUIコンポーネントやインタラクションに関する知識を充実させます。
論文 参考訳(メタデータ) (2024-06-17T08:30:55Z) - GUI-WORLD: A Dataset for GUI-oriented Multimodal LLM-based Agents [73.9254861755974]
本稿では,人間のMLLMアノテーションを巧みに作成するGUI-Worldという新しいデータセットを提案する。
各種GUIコンテンツの理解において,ImageLLMs や VideoLLMs などの最先端MLLMの能力を評価する。
論文 参考訳(メタデータ) (2024-06-16T06:56:53Z) - Interlinking User Stories and GUI Prototyping: A Semi-Automatic LLM-based Approach [55.762798168494726]
グラフィカルユーザインタフェース(GUI)のプロトタイプにおいて,機能的NLベースの要求の実装を検証するための新しい言語モデル(LLM)ベースのアプローチを提案する。
提案手法は,GUIプロトタイプに実装されていない機能的ユーザストーリの検出と,要件を直接実装する適切なGUIコンポーネントのレコメンデーションを提供することを目的としている。
論文 参考訳(メタデータ) (2024-06-12T11:59:26Z) - AgentStudio: A Toolkit for Building General Virtual Agents [57.02375267926862]
一般的な仮想エージェントは、マルチモーダルな観察、複雑なアクション空間のマスター、動的でオープンなドメイン環境における自己改善を扱う必要がある。
AgentStudioは、非常に汎用的な観察とアクション空間を備えた軽量でインタラクティブな環境を提供する。
オンラインベンチマークタスクの作成、GUI要素の注釈付け、ビデオ内のアクションのラベル付けといったツールを統合する。
環境とツールに基づいて、GUIインタラクションと関数呼び出しの両方を効率的な自動評価でベンチマークするオンラインタスクスイートをキュレートします。
論文 参考訳(メタデータ) (2024-03-26T17:54:15Z) - Gamified GUI testing with Selenium in the IntelliJ IDE: A Prototype Plugin [0.559239450391449]
本稿では,IntelliJ IDEA用のガミフィケーションプラグインのプロトタイプであるGIPGUTについて述べる。
このプラグインは、達成、報酬、プロファイルのカスタマイズを通じて、単調で退屈なタスクにテスタのエンゲージメントを高める。
その結果,ゲーミフィケーション要素の高利用性と肯定的な受容性が示唆された。
論文 参考訳(メタデータ) (2024-03-14T20:11:11Z) - CoCo-Agent: A Comprehensive Cognitive MLLM Agent for Smartphone GUI Automation [61.68049335444254]
MLLM(Multimodal large language model)は、人間のような自律型言語エージェントが現実世界の環境と相互作用する可能性を示している。
包括的環境認識(CEP)と条件付き行動予測(CAP)の2つの新しいアプローチを備えた包括的認知型LLMエージェントCoCo-Agentを提案する。
AITW と META-GUI ベンチマークにおいて,我々のエージェントは実シナリオで有望な性能を示す新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-19T08:29:03Z) - Autonomous Large Language Model Agents Enabling Intent-Driven Mobile GUI
Testing [17.24045904273874]
そこで我々は,Android用の自動GUIテストエージェントであるDroidAgentを提案する。
これはLarge Language Modelと、長期記憶や短期記憶などのサポートメカニズムに基づいている。
DroidAgentは61%のアクティビティカバレッジを達成したが、現在の最先端のGUIテスト技術では51%だった。
論文 参考訳(メタデータ) (2023-11-15T01:59:40Z) - Make LLM a Testing Expert: Bringing Human-like Interaction to Mobile GUI
Testing via Functionality-aware Decisions [23.460051600514806]
GPTDroidは、モバイルアプリ向けのQ&AベースのGUIテスティングフレームワークである。
機能認識型メモリプロンプト機構を導入する。
アクティビティのカバレッジが32%向上し、より高速な速度で31%のバグを検出する。
論文 参考訳(メタデータ) (2023-10-24T12:30:26Z) - You Only Look at Screens: Multimodal Chain-of-Action Agents [37.118034745972956]
Auto-GUIは、インターフェースと直接対話するマルチモーダルソリューションである。
そこで本研究では,エージェントが実行すべきアクションを決定するためのチェーン・オブ・アクション手法を提案する。
我々は,30$Kのユニークな命令を持つ新しいデバイス制御ベンチマークAITWに対するアプローチを評価した。
論文 参考訳(メタデータ) (2023-09-20T16:12:32Z) - Chatting with GPT-3 for Zero-Shot Human-Like Mobile Automated GUI
Testing [23.460051600514806]
GPTDroid を提案し,GUI ページ情報を LLM に渡してテストスクリプトを抽出することにより,大規模言語モデルにモバイルアプリとのチャットを依頼する。
そこで我々はGUIページの静的コンテキストと反復テストプロセスの動的コンテキストを抽出する。
Google Playの86のアプリ上でGPTDroidを評価し、そのアクティビティカバレッジは71%で、最高のベースラインよりも32%高く、最高のベースラインよりも高速で36%多くのバグを検出することができます。
論文 参考訳(メタデータ) (2023-05-16T13:46:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。