論文の概要: Enhancing AI Safety Through the Fusion of Low Rank Adapters
- arxiv url: http://arxiv.org/abs/2501.06208v1
- Date: Mon, 30 Dec 2024 13:12:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-19 08:09:24.305081
- Title: Enhancing AI Safety Through the Fusion of Low Rank Adapters
- Title(参考訳): 低ランクアダプタの融合によるAIの安全性向上
- Authors: Satya Swaroop Gudipudi, Sreeram Vipparla, Harpreet Singh, Shashwat Goel, Ponnurangam Kumaraguru,
- Abstract要約: 低ランク適応核融合は、悪意のあるプロンプトに直面した場合に有害な応答を緩和する。
タスクアダプタと安全アダプタとのLoRA融合を利用して, 有害度率を42%低減した。
また、モデルが安全でないものに近い安全なプロンプトを拒否する、誇張された安全行動も観察する。
- 参考スコア(独自算出の注目度): 7.384556630042846
- License:
- Abstract: Instruction fine-tuning of large language models (LLMs) is a powerful method for improving task-specific performance, but it can inadvertently lead to a phenomenon where models generate harmful responses when faced with malicious prompts. In this paper, we explore Low-Rank Adapter Fusion (LoRA) as a means to mitigate these risks while preserving the model's ability to handle diverse instructions effectively. Through an extensive comparative analysis against established baselines using recognized benchmark datasets, we demonstrate a 42\% reduction in the harmfulness rate by leveraging LoRA fusion between a task adapter and a safety adapter, the latter of which is specifically trained on our safety dataset. However, we also observe exaggerated safety behaviour, where the model rejects safe prompts that closely resemble unsafe ones
- Abstract(参考訳): 大規模言語モデル(LLM)のインストラクション微調整はタスク固有の性能を改善する強力な手法であるが、悪質なプロンプトに直面するとモデルが有害な応答を発生させる現象を必然的に引き起こす可能性がある。
本稿では、モデルが多様な命令を効果的に処理する能力を保ちながら、これらのリスクを軽減する手段として、ローランド・アダプタ・フュージョン(LoRA)を探索する。
認識されたベンチマークデータセットを用いた確立されたベースラインに対する広範な比較分析により、タスクアダプタと安全アダプタのLoRA融合を利用した有害度率の42.5%削減を実証した。
しかし、モデルが安全でないものに近い安全なプロンプトを拒絶する過大な安全行動も観察する。
関連論文リスト
- Root Defence Strategies: Ensuring Safety of LLM at the Decoding Level [10.658844160259104]
大規模言語モデル (LLM) は様々な産業で大きな有用性を示している。
LLMが進むにつれて、不正または悪意のある命令プロンプトによって有害な出力のリスクが増大する。
本稿では, LLMが有害な出力を認識する能力について検討し, 従来のトークンの危険性を評価する能力を明らかにし, 定量化する。
論文 参考訳(メタデータ) (2024-10-09T12:09:30Z) - What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
安全性の微調整は、大規模な言語モデル(LLM)を、安全なデプロイメントのための人間の好みに合わせるのに役立つ。
安全でない入力の健全な側面をキャプチャする合成データ生成フレームワークを設計する。
これを用いて,3つのよく知られた安全微調整手法について検討する。
論文 参考訳(メタデータ) (2024-07-14T16:12:57Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
本研究では,Large Language Models (LLMs) の安全性チューニングにおける重要なギャップについて考察する。
我々は,LLMに対して,いかなる応答位置においても有害なプロンプトへのコンプライアンスを拒否する権限を与える新しいアプローチであるDecoupled Refusal Training(DeRTa)を導入する。
DeRTaは、(1)安全応答の開始に有害な応答のセグメントを付加することにより、安全でないコンテンツを認識・回避するようモデルに訓練する、(1)有害応答前フィックスによる最大限の類似度推定、(2)有害応答の開始を通して潜在的害から安全拒絶へ継続的に移行する能力を持つ強化遷移最適化(RTO)という2つの新しいコンポーネントを組み込んでいる。
論文 参考訳(メタデータ) (2024-07-12T09:36:33Z) - Jailbreaking as a Reward Misspecification Problem [80.52431374743998]
本稿では,この脆弱性をアライメントプロセス中に不特定性に対処する新たな視点を提案する。
本稿では,報酬の相違の程度を定量化し,その有効性を実証する指標ReGapを紹介する。
ReMissは、報酬ミスの空間で敵のプロンプトを生成する自動レッドチームリングシステムである。
論文 参考訳(メタデータ) (2024-06-20T15:12:27Z) - Mimicking User Data: On Mitigating Fine-Tuning Risks in Closed Large Language Models [53.50543146583101]
小さなデータセット上の微調整された大きな言語モデルは、特定の下流タスクのパフォーマンスを向上させることができる。
悪意のあるアクターは、ほぼすべてのタスク固有のデータセットの構造を微妙に操作することで、より危険なモデル行動を促進することができる。
本稿では,タスク形式を模倣した安全データとユーザデータのスタイルを混合した新しい緩和戦略を提案する。
論文 参考訳(メタデータ) (2024-06-12T18:33:11Z) - On Prompt-Driven Safeguarding for Large Language Models [172.13943777203377]
表現空間では、入力クエリは通常、安全プロンプトによって「より高い拒絶」方向に移動される。
これらの知見に触発されて,安全性向上,すなわちDROの最適化手法を提案する。
安全性プロンプトを継続的かつトレーニング可能な埋め込みとして扱うことで、DROは、その有害性に応じて、クエリの表現を拒否方向に沿ってあるいは反対に移動させることを学ぶ。
論文 参考訳(メタデータ) (2024-01-31T17:28:24Z) - Safe MDP Planning by Learning Temporal Patterns of Undesirable
Trajectories and Averting Negative Side Effects [27.41101006357176]
安全なMDP計画では、現在の状態と行動に基づくコスト関数が安全面を特定するためにしばしば使用される。
不完全なモデルに基づく操作は、しばしば意図しない負の副作用(NSE)を生じさせる
論文 参考訳(メタデータ) (2023-04-06T14:03:24Z) - Online Safety Property Collection and Refinement for Safe Deep
Reinforcement Learning in Mapless Navigation [79.89605349842569]
オンラインプロパティのコレクション・リファインメント(CROP)フレームワークをトレーニング時にプロパティを設計するために導入する。
CROPは、安全でない相互作用を識別し、安全特性を形成するためにコストシグナルを使用する。
本手法をいくつかのロボットマップレスナビゲーションタスクで評価し,CROPで計算した違反量によって,従来のSafe DRL手法よりも高いリターンと低いリターンが得られることを示す。
論文 参考訳(メタデータ) (2023-02-13T21:19:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。