論文の概要: Weakly-supervised Autism Severity Assessment in Long Videos
- arxiv url: http://arxiv.org/abs/2407.09159v1
- Date: Fri, 12 Jul 2024 10:45:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-15 23:57:34.184549
- Title: Weakly-supervised Autism Severity Assessment in Long Videos
- Title(参考訳): 長時間ビデオにおける弱教師付き自閉症重症度評価
- Authors: Abid Ali, Mahmoud Ali, Jean-Marc Odobez, Camilla Barbini, Séverine Dubuisson, Francois Bremond, Susanne Thümmler,
- Abstract要約: 自閉症スペクトラム障害(Autism Spectrum disorder、ASD)は、社会的コミュニケーションと相互作用の課題を特徴とする多様な神経生物学的条件のコレクションである。
長い、トリミングされていないビデオにおける非定型的な行動パターンは、ASDを持つ子供のバイオマーカーとして機能する。
- 参考スコア(独自算出の注目度): 11.976885834298566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autism Spectrum Disorder (ASD) is a diverse collection of neurobiological conditions marked by challenges in social communication and reciprocal interactions, as well as repetitive and stereotypical behaviors. Atypical behavior patterns in a long, untrimmed video can serve as biomarkers for children with ASD. In this paper, we propose a video-based weakly-supervised method that takes spatio-temporal features of long videos to learn typical and atypical behaviors for autism detection. On top of that, we propose a shallow TCN-MLP network, which is designed to further categorize the severity score. We evaluate our method on actual evaluation videos of children with autism collected and annotated (for severity score) by clinical professionals. Experimental results demonstrate the effectiveness of behavioral biomarkers that could help clinicians in autism spectrum analysis.
- Abstract(参考訳): 自閉症スペクトラム障害(Autism Spectrum disorder、ASD)は、社会的コミュニケーションと相互相互作用における課題と、反復的およびステレオタイプ的行動に特徴付けられる多様な神経生物学的条件の集合である。
長い、トリミングされていないビデオにおける非定型的な行動パターンは、ASDを持つ子供のバイオマーカーとして機能する。
本稿では,長編ビデオの時空間的特徴を利用して,自閉症検出のための典型的,非典型的動作を学習するビデオベースの弱教師付き手法を提案する。
そこで本研究では,重度スコアをさらに分類するために,TN-MLPの浅層ネットワークを提案する。
臨床専門医による自閉症児の実際の評価ビデオ(重症度スコア)について検討した。
実験により, 自閉症スペクトラム分析における臨床医を支援する行動バイオマーカーの有効性が示された。
関連論文リスト
- Towards Child-Inclusive Clinical Video Understanding for Autism Spectrum Disorder [27.788204861041553]
本研究では,3つのモダリティ(音声,ビデオ,テキスト)にまたがる基礎モデルを用いて,子どものインタラクション・セッションの分析を行う。
本研究は,行動認識と異常行動検出という,情報粒度の異なる2つのタスクにおいて,その性能を評価する。
論文 参考訳(メタデータ) (2024-09-20T16:06:46Z) - Hear Me, See Me, Understand Me: Audio-Visual Autism Behavior Recognition [47.550391816383794]
本稿では,音声・視覚自閉症の行動認識の新たな課題について紹介する。
社会的行動認識は、AIによる自閉症スクリーニング研究において、これまで省略されてきた重要な側面である。
データセット、コード、事前トレーニングされたモデルをリリースします。
論文 参考訳(メタデータ) (2024-03-22T22:52:35Z) - Video-Based Autism Detection with Deep Learning [0.0]
感覚刺激に反応する子供の映像クリップを解析する深層学習モデルを開発した。
以上の結果から,本モデルは子どもの運動における重要な違いを効果的に一般化し,理解していることが明らかとなった。
論文 参考訳(メタデータ) (2024-02-26T17:45:00Z) - Screening Autism Spectrum Disorder in childrens using Deep Learning
Approach : Evaluating the classification model of YOLOv8 by comparing with
other models [0.0]
そこで本稿では,YoloV8モデルを用いた顔画像を用いたASDスクリーニングの実践的解決策を提案する。
分類の精度は89.64%、F1スコアは0.89。
論文 参考訳(メタデータ) (2023-06-25T18:02:01Z) - Exploiting the Brain's Network Structure for Automatic Identification of
ADHD Subjects [70.37277191524755]
我々は脳を機能的ネットワークとしてモデル化できることを示し,ADHD被験者と制御対象とではネットワークの特定の特性が異なることを示した。
776名の被験者で分類器を訓練し,ADHD-200チャレンジのために神経局が提供する171名の被験者を対象に試験を行った。
論文 参考訳(メタデータ) (2023-06-15T16:22:57Z) - Human Gesture and Gait Analysis for Autism Detection [23.77172199742202]
非定型歩行とジェスチャーパターンは自閉症の主要な行動特性である。
本稿では,自閉症児の身振りと歩行行動の分析を行った。
論文 参考訳(メタデータ) (2023-04-17T15:31:22Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
ヒトの初期および後期の脳障害は、脳機能における病理学的変化を共有する可能性がある。
病理的共通性に関する神経画像データによる重要な証拠はいまだ発見されていない。
多地点機能磁気共鳴画像データを用いたディープラーニングモデルを構築し、健康的な制御から5つの異なる脳障害を分類する。
論文 参考訳(メタデータ) (2023-02-23T09:22:05Z) - Vision-Based Activity Recognition in Children with Autism-Related
Behaviors [15.915410623440874]
臨床医や親が子どもの行動を分析するのに役立つ地域型コンピュータビジョンシステムの効果を実証する。
データは、ビデオ中の対象の子供を検出し、背景雑音の影響を低減することで前処理される。
時間的畳み込みモデルの有効性から,ビデオフレームから動作特徴を抽出できる軽量モデルと従来モデルの両方を提案する。
論文 参考訳(メタデータ) (2022-08-08T15:12:27Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
本研究では,非構造的トピック関連超音波レポート生成のための新しい因子的注意・埋め込みモデル(FAE-Gen)を提案する。
提案したFAE-Genは主に2つのモジュール、すなわちビュー誘導因子の注意とトピック指向因子の埋め込みから構成されており、異なるビューで均質および不均一な形態的特徴を捉えている。
論文 参考訳(メタデータ) (2022-03-12T15:24:03Z) - Muti-view Mouse Social Behaviour Recognition with Deep Graphical Model [124.26611454540813]
マウスの社会的行動分析は神経変性疾患の治療効果を評価する貴重なツールである。
マウスの社会行動の豊かな記述を創出する可能性から、ネズミの観察にマルチビュービデオ記録を使用することは、ますます注目を集めている。
本稿では,ビュー固有のサブ構造とビュー共有サブ構造を協調的に学習する,新しい多視点潜在意識・動的識別モデルを提案する。
論文 参考訳(メタデータ) (2020-11-04T18:09:58Z) - Early Autism Spectrum Disorders Diagnosis Using Eye-Tracking Technology [62.997667081978825]
資金不足、資格のある専門家の欠如、そして修正方法に対する信頼度の低いことが、AMDのリアルタイム診断に影響を及ぼす主要な問題である。
我々のチームは、子どもの視線活動の情報に基づいて、ALDの確率を予測するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-08-21T20:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。