論文の概要: TPIA: Towards Target-specific Prompt Injection Attack against Code-oriented Large Language Models
- arxiv url: http://arxiv.org/abs/2407.09164v4
- Date: Thu, 16 Jan 2025 07:50:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:07:53.610139
- Title: TPIA: Towards Target-specific Prompt Injection Attack against Code-oriented Large Language Models
- Title(参考訳): TPIA: コード指向大規模言語モデルに対するターゲット特異的プロンプトインジェクションアタックを目指して
- Authors: Yuchen Yang, Hongwei Yao, Bingrun Yang, Yiling He, Yiming Li, Tianwei Zhang, Zhan Qin, Kui Ren, Chun Chen,
- Abstract要約: 本稿では,標的特異的プロンプトインジェクション攻撃(TPIA)という,コードLLMに対する新たな攻撃パラダイムを提案する。
TPIAは悪意のある命令の情報を含む非機能的摂動を生成し、被害者のコードコンテキストに挿入する。
我々のTPIAは、3つの代表的なオープンソースコードLLMと、2つの主要な商用コードLLM統合アプリケーションにうまく対応できることを示す。
- 参考スコア(独自算出の注目度): 28.827640446926253
- License:
- Abstract: Recently, code-oriented large language models (Code LLMs) have been widely exploited to simplify and facilitate programming. With these tools, developers can easily generate the desired complete functional code based on incomplete code snippets and natural language prompts. Unfortunately, a few pioneering works revealed that these Code LLMs are vulnerable to backdoor and adversarial attacks. The former poisons the training data or model parameters, hijacking the LLMs to generate malicious code snippets when encountering the trigger. The latter crafts malicious adversarial input codes to reduce the quality of the generated codes. However, both attacks have some inherent limitations: backdoor attacks rely on the adversary's capability of controlling the model training process; adversarial attacks struggle with fulfilling specific malicious purposes. This paper presents a novel attack paradigm against Code LLMs, namely target-specific prompt injection attack (TPIA). TPIA generates non-functional perturbations containing the information of malicious instructions and inserts them into the victim's code context by spreading them into potentially used dependencies (e.g., packages or RAG's knowledge base). It induces the Code LLMs to generate attacker-specified malicious code snippets at the target location. In general, we compress the attacker-specified malicious objective into the perturbation by adversarial optimization based on greedy token search. We collect 13 representative malicious objectives to design 31 threat cases for three popular programming languages. We show that our TPIA can successfully attack three representative open-source Code LLMs (with an ASR of up to 97.9%) and two mainstream commercial Code LLM-integrated applications (with an ASR of over 90%) in all threat cases, using only a 12-token perturbation. Our work alerts a new practical threat of using Code LLMs.
- Abstract(参考訳): 近年、コード指向の大規模言語モデル (Code LLM) が、プログラミングを簡素化し、促進するために広く利用されている。
これらのツールを使えば、開発者は不完全なコードスニペットと自然言語プロンプトに基づいて、望まれる完全な関数コードを簡単に生成できる。
残念ながら、いくつかの先駆的な研究により、これらのコードLLMはバックドアや敵の攻撃に対して脆弱であることが判明した。
前者はトレーニングデータやモデルパラメータを汚染し、LSMをハイジャックしてトリガーに遭遇したときに悪意のあるコードスニペットを生成する。
後者は悪意のある敵入力コードを作成し、生成されたコードの品質を低下させる。
バックドアアタックは、モデルトレーニングプロセスを制御する敵の能力に依存し、敵のアタックは特定の悪意のある目的を達成するのに苦労する。
本稿では,ターゲット特異的プロンプトインジェクション攻撃(TPIA)という,コードLLMに対する新たな攻撃パラダイムを提案する。
TPIAは悪意のある命令の情報を含む非機能的摂動を生成し、それらを潜在的に使用される依存関係(パッケージやRAGの知識ベースなど)に分散することで、被害者のコードコンテキストに挿入する。
ターゲット位置で攻撃者が特定した悪意のあるコードスニペットを生成するために、コードLLMを誘導する。
一般に,攻撃者が特定した悪意のある目的を,強欲なトークン探索に基づく逆最適化により摂動に圧縮する。
3つの人気のあるプログラミング言語に対して、31の脅威ケースを設計するために、13の代表的な悪意のある目標を収集します。
我々のTPIAは、すべての脅威ケースにおいて、最大97.9%のASRを持つ3つの代表的なオープンソースコードLLMと、2つの主要な商用コードLLM統合アプリケーション(90%以上のASRを持つ)を、たった12の摂動だけで、うまく攻撃できることを示します。
私たちの仕事は、Code LLMを使用するという新たな現実的な脅威を警告します。
関連論文リスト
- Denial-of-Service Poisoning Attacks against Large Language Models [64.77355353440691]
LLMはDenial-of-Service(DoS)攻撃に対して脆弱で、スペルエラーや非意味的なプロンプトが[EOS]トークンを生成することなく、無限のアウトプットをトリガーする。
本研究では, LLM に対する毒素を用いた DoS 攻撃について提案し, 1 つの毒素を注入することで, 出力長の限界を破ることができることを示した。
論文 参考訳(メタデータ) (2024-10-14T17:39:31Z) - Generalized Adversarial Code-Suggestions: Exploiting Contexts of LLM-based Code-Completion [4.940253381814369]
逆のコード提案は、データ中毒によって導入することができ、したがって、モデル作成者が無意識に行うことができる。
本稿では、このような攻撃を一般化した定式化を行い、この領域における関連する研究を創出し、拡張する。
後者は新規でフレキシブルな攻撃戦略を生み出し、敵は特定のユーザーグループに対して最適なトリガーパターンを任意に選択できる。
論文 参考訳(メタデータ) (2024-10-14T14:06:05Z) - Aligning LLMs to Be Robust Against Prompt Injection [55.07562650579068]
インジェクション攻撃に対してLCMをより堅牢にするための強力なツールとしてアライメントが有効であることを示す。
私たちのメソッド -- SecAlign -- は、最初に、プロンプトインジェクション攻撃をシミュレートしてアライメントデータセットを構築します。
実験の結果,SecAlign は LLM を大幅に強化し,モデルの実用性に悪影響を及ぼすことが示された。
論文 参考訳(メタデータ) (2024-10-07T19:34:35Z) - An LLM-Assisted Easy-to-Trigger Backdoor Attack on Code Completion Models: Injecting Disguised Vulnerabilities against Strong Detection [17.948513691133037]
我々は,コード補完モデルに基づくLLM支援バックドアアタックフレームワークであるCodeBreakerを紹介した。
悪意のあるペイロードを最小限の変換でソースコードに直接統合することで、CodeBreakerは現在のセキュリティ対策に挑戦する。
論文 参考訳(メタデータ) (2024-06-10T22:10:05Z) - Assessing Cybersecurity Vulnerabilities in Code Large Language Models [18.720986922660543]
EvilInstructCoderは、命令チューニングされたコードLLMのサイバーセキュリティ脆弱性を敵の攻撃に対して評価するように設計されたフレームワークである。
実際の脅威モデルを組み込んで、さまざまな能力を持つ現実世界の敵を反映している。
我々は、3つの最先端のCode LLMモデルを用いて、コーディングタスクのための命令チューニングの活用性について包括的に調査する。
論文 参考訳(メタデータ) (2024-04-29T10:14:58Z) - Coercing LLMs to do and reveal (almost) anything [80.8601180293558]
大規模言語モデル(LLM)に対する敵対的攻撃は、有害なステートメントを作るためにモデルを「ジェイルブレイク」することができることが示されている。
LLMに対する敵対的攻撃のスペクトルは単なるジェイルブレイクよりもはるかに大きいと我々は主張する。
論文 参考訳(メタデータ) (2024-02-21T18:59:13Z) - Instruction Backdoor Attacks Against Customized LLMs [37.92008159382539]
我々は、信頼できないカスタマイズ LLM と統合されたアプリケーションに対して、最初の命令バックドアアタックを提案する。
私たちの攻撃には、単語レベル、構文レベル、意味レベルという3つのレベルの攻撃が含まれています。
本稿では,2つの防衛戦略を提案し,その効果を実証する。
論文 参考訳(メタデータ) (2024-02-14T13:47:35Z) - Transfer Attacks and Defenses for Large Language Models on Coding Tasks [30.065641782962974]
大規模言語モデル(LLM)を用いた符号化作業における対向的摂動の影響について検討する。
本稿では,逆方向の摂動を逆転させるために,逆方向の摂動コードや明示的な指示の例を含むようにプロンプトを変更するプロンプトベースの防御手法を提案する。
実験の結果、より小さなコードモデルで得られた逆例は確かに転送可能であり、LLMの性能は低下していることがわかった。
論文 参考訳(メタデータ) (2023-11-22T15:11:35Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
SmoothLLMは,大規模言語モデル(LLM)に対するジェイルブレーキング攻撃を軽減するために設計された,最初のアルゴリズムである。
敵が生成したプロンプトが文字レベルの変化に対して脆弱であることから、我々の防衛はまず、与えられた入力プロンプトの複数のコピーをランダムに摂動し、対応する予測を集約し、敵の入力を検出する。
論文 参考訳(メタデータ) (2023-10-05T17:01:53Z) - Universal and Transferable Adversarial Attacks on Aligned Language
Models [118.41733208825278]
本稿では,アライメント言語モデルに反抗的な振る舞いを生じさせる,シンプルで効果的な攻撃手法を提案する。
驚いたことに、我々のアプローチによって生じる敵のプロンプトは、かなり伝達可能である。
論文 参考訳(メタデータ) (2023-07-27T17:49:12Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
大規模言語モデル(LLM)は、様々なアプリケーションに統合されつつある。
本稿では、プロンプトインジェクション攻撃を用いて、攻撃者が元の命令をオーバーライドし、制御を採用する方法を示す。
我々は、コンピュータセキュリティの観点から、影響や脆弱性を体系的に調査する包括的な分類法を導出する。
論文 参考訳(メタデータ) (2023-02-23T17:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。