論文の概要: Conformal Inductive Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2407.09173v1
- Date: Fri, 12 Jul 2024 11:12:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-15 23:47:49.952549
- Title: Conformal Inductive Graph Neural Networks
- Title(参考訳): 共形誘導型グラフニューラルネットワーク
- Authors: Soroush H. Zargarbashi, Aleksandar Bojchevski,
- Abstract要約: コンフォーマル予測(CP)は、任意のモデルの出力を真のラベルを含むことが保証された予測セットに変換する。
CPは、有効な分布のないカバレッジを保証するために、i.d.仮定の緩和である交換可能性を必要とする。
従来のCPは、新しいノードとのメッセージパッシングによって生じる(校正)スコアの暗黙的なシフトのため、誘導的な設定では適用できない。
保証が予測時間(例えば、新しいノード/エッジの到着時や後続の瞬間)とは独立に成り立つことを証明します。
- 参考スコア(独自算出の注目度): 58.450154976190795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conformal prediction (CP) transforms any model's output into prediction sets guaranteed to include (cover) the true label. CP requires exchangeability, a relaxation of the i.i.d. assumption, to obtain a valid distribution-free coverage guarantee. This makes it directly applicable to transductive node-classification. However, conventional CP cannot be applied in inductive settings due to the implicit shift in the (calibration) scores caused by message passing with the new nodes. We fix this issue for both cases of node and edge-exchangeable graphs, recovering the standard coverage guarantee without sacrificing statistical efficiency. We further prove that the guarantee holds independently of the prediction time, e.g. upon arrival of a new node/edge or at any subsequent moment.
- Abstract(参考訳): コンフォーマル予測(CP)は、任意のモデルの出力を真のラベルを含むことが保証された予測セットに変換する。
CPは、有効な分布のないカバレッジを保証するために、i.d.仮定の緩和である交換可能性を必要とする。
これにより、トランスダクティブノード分類に直接適用することができる。
しかし、従来のCPは、新しいノードとのメッセージパッシングに起因する(校正)スコアの暗黙的なシフトのため、誘導的な設定では適用できない。
ノードグラフとエッジ交換可能なグラフの両方のケースでこの問題を修正し、統計的効率を犠牲にすることなく標準カバレッジ保証を回復する。
さらに、新しいノード/エッジの到着時や後続の瞬間に、保証が予測時間とは独立に保持されていることを証明します。
関連論文リスト
- Online scalable Gaussian processes with conformal prediction for guaranteed coverage [32.21093722162573]
結果として生じる不確実な値の整合性は、学習関数がGPモデルで指定された特性に従うという前提に基づいている。
提案するGPは,分散のない後処理フレームワークである共形予測(CP)を用いて,有意なカバレッジで予測セットを生成する。
論文 参考訳(メタデータ) (2024-10-07T19:22:15Z) - Robust Yet Efficient Conformal Prediction Sets [53.78604391939934]
コンフォーマル予測(CP)は、任意のモデルの出力を真のラベルを含むことが保証された予測セットに変換することができる。
整合性スコアの最悪のケース変化をバウンドすることで、証明可能なロバストな集合を導出する。
論文 参考訳(メタデータ) (2024-07-12T10:59:44Z) - Similarity-Navigated Conformal Prediction for Graph Neural Networks [6.318857043484474]
我々はSNAPS(Simisity-Navigated Adaptive Prediction Sets)という新しいアルゴリズムを提案する。
SNAPSは特徴類似性と構造近傍に基づく非整合スコアを集約する。
コンパクトな予測セットを生成し、シングルトンヒット比を増大させることができる。
論文 参考訳(メタデータ) (2024-05-23T08:23:22Z) - Predicting generalization performance with correctness discriminators [64.00420578048855]
未確認データに対して,金のラベルを必要とせず,精度の上下境界を確立する新しいモデルを提案する。
予測された上境界と下限の間に金の精度が確実に成立する様々なタグ付け、構文解析、意味解析タスクを示す。
論文 参考訳(メタデータ) (2023-11-15T22:43:42Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに基づく強力な機械学習予測モデルである。
GNNには厳密な不確実性見積が欠如しており、エラーのコストが重要な設定での信頼性の高いデプロイメントが制限されている。
本稿では,共形予測(CP)をグラフベースモデルに拡張した共形GNN(CF-GNN)を提案する。
論文 参考訳(メタデータ) (2023-05-23T21:38:23Z) - A Graph Is More Than Its Nodes: Towards Structured Uncertainty-Aware
Learning on Graphs [49.76175970328538]
本稿では,エッジワイド・キャリブレーション・エラー(ECE)とアライアンス・ディスアグリーECEを新たに提案し,ノードワイド・セッティングを超えるグラフの不確実性推定の基準を提供する。
実験により,提案したエッジワイドメトリクスがノードワイズの結果を補完し,さらなる洞察を得ることが実証された。
論文 参考訳(メタデータ) (2022-10-27T16:12:58Z) - Approximate Conditional Coverage via Neural Model Approximations [0.030458514384586396]
実験的に信頼性の高い近似条件付きカバレッジを得るためのデータ駆動手法を解析する。
我々は、限界範囲のカバレッジ保証を持つ分割型代替案で、実質的な(そして、そうでない)アンダーカバーの可能性を実証する。
論文 参考訳(メタデータ) (2022-05-28T02:59:05Z) - Distribution-free uncertainty quantification for classification under
label shift [105.27463615756733]
2つの経路による分類問題に対する不確実性定量化(UQ)に焦点を当てる。
まず、ラベルシフトはカバレッジとキャリブレーションの低下を示すことでuqを損なうと論じる。
これらの手法を, 理論上, 分散性のない枠組みで検討し, その優れた実用性を示す。
論文 参考訳(メタデータ) (2021-03-04T20:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。