論文の概要: Online scalable Gaussian processes with conformal prediction for guaranteed coverage
- arxiv url: http://arxiv.org/abs/2410.05444v1
- Date: Mon, 7 Oct 2024 19:22:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 18:37:46.513796
- Title: Online scalable Gaussian processes with conformal prediction for guaranteed coverage
- Title(参考訳): 保証カバレッジの共形予測を伴うオンラインスケーラブルガウス過程
- Authors: Jinwen Xu, Qin Lu, Georgios B. Giannakis,
- Abstract要約: 結果として生じる不確実な値の整合性は、学習関数がGPモデルで指定された特性に従うという前提に基づいている。
提案するGPは,分散のない後処理フレームワークである共形予測(CP)を用いて,有意なカバレッジで予測セットを生成する。
- 参考スコア(独自算出の注目度): 32.21093722162573
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Gaussian process (GP) is a Bayesian nonparametric paradigm that is widely adopted for uncertainty quantification (UQ) in a number of safety-critical applications, including robotics, healthcare, as well as surveillance. The consistency of the resulting uncertainty values however, hinges on the premise that the learning function conforms to the properties specified by the GP model, such as smoothness, periodicity and more, which may not be satisfied in practice, especially with data arriving on the fly. To combat against such model mis-specification, we propose to wed the GP with the prevailing conformal prediction (CP), a distribution-free post-processing framework that produces it prediction sets with a provably valid coverage under the sole assumption of data exchangeability. However, this assumption is usually violated in the online setting, where a prediction set is sought before revealing the true label. To ensure long-term coverage guarantee, we will adaptively set the key threshold parameter based on the feedback whether the true label falls inside the prediction set. Numerical results demonstrate the merits of the online GP-CP approach relative to existing alternatives in the long-term coverage performance.
- Abstract(参考訳): ガウス過程(英: Gaussian process、GP)は、ロボット工学、医療、監視など、多くの安全上重要な応用において、不確実な定量化(UQ)のために広く採用されているベイズ非パラメトリックパラダイムである。
しかし、結果として生じる不確実な値の整合性は、学習関数が滑らかさ、周期性などのGPモデルで定義された性質に従うという前提に基づいている。
このようなモデルの誤特定に対抗するため,データ交換可能性の唯一の前提の下で,有意に有効なカバレッジで予測セットを生成する分散自由な後処理フレームワークであるCPを用いてGPを織り込むことを提案する。
しかし、この仮定は通常、真のラベルを明らかにする前に予測セットを求めるオンライン設定で違反する。
長期間のカバレッジ保証を確保するため、真のラベルが予測セット内にあるかどうかのフィードバックに基づいて、キーしきい値パラメータを適応的に設定する。
計算結果から, GP-CP によるオンライン手法の利点を, 長期被覆性能において有意な比較を行った。
関連論文リスト
- Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
生成モデルは出力に対する厳密な統計的保証を欠いている。
厳密な統計的保証を満たす予測セットを生成する逐次共形予測法を提案する。
このことは、高い確率で予測セットが少なくとも1つの許容可能な(または有効な)例を含むことを保証している。
論文 参考訳(メタデータ) (2024-10-02T15:26:52Z) - Beyond Conformal Predictors: Adaptive Conformal Inference with Confidence Predictors [0.0]
コンフォーマル予測は、ユーザ指定の重要度レベルで有効な予測セットを保証するために、交換可能なデータを必要とする。
適応共形推論 (Adaptive conformal inference, ACI) は、この制限に対処するために導入された。
我々は、ACIが共形予測器を必要とせず、より一般的な信頼性予測器で実装可能であることを示す。
論文 参考訳(メタデータ) (2024-09-23T21:02:33Z) - Spatial-Aware Conformal Prediction for Trustworthy Hyperspectral Image Classification [39.71307720326761]
ハイパースペクトル画像(HSI)分類では、各ピクセルに固有のラベルを割り当て、様々な土地被覆カテゴリを識別する。
深部分類器はこの分野で高い予測精度を達成したが、予測の信頼性を定量化する能力は欠如している。
本研究では,HSIデータに特化して設計されたコンフォメーション予測フレームワークであるSpatial-Aware Conformal Prediction (textttSACP)を紹介する。
論文 参考訳(メタデータ) (2024-09-02T13:11:38Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - The Penalized Inverse Probability Measure for Conformal Classification [0.5172964916120902]
この研究は、Pinalized Inverse Probability(PIP)の非整合性スコアと、その正規化バージョンRePIPを導入し、効率性と情報性の両方を共同で最適化する。
この研究は、PIPに基づく共形分類器が、他の非整合性対策と比較して正確に望ましい振る舞いを示し、情報性と効率のバランスを保っていることを示す。
論文 参考訳(メタデータ) (2024-06-13T07:37:16Z) - Guaranteed Coverage Prediction Intervals with Gaussian Process Regression [0.6993026261767287]
本稿では,CP(Conformal Prediction)と呼ばれる機械学習フレームワークに基づくGPRの拡張を提案する。
この拡張により、モデルを完全に不特定であっても、必要なカバレッジでPIの生成が保証される。
論文 参考訳(メタデータ) (2023-10-24T08:59:40Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
コンフォーマル予測は、機械学習において厳密な不確実性定量化を提供するための一般的なパラダイムとして現れつつある。
本稿では,共形予測を連邦学習環境に拡張する。
本稿では、FL設定に適した部分交換可能性の弱い概念を提案し、それをフェデレート・コンフォーマル予測フレームワークの開発に利用する。
論文 参考訳(メタデータ) (2023-05-27T19:57:27Z) - Distribution-Free Finite-Sample Guarantees and Split Conformal
Prediction [0.0]
分割共形予測は、最小分布自由仮定の下で有限サンプル保証を得るための有望な道を表す。
1940年代に開発された分割共形予測と古典的寛容予測との関連性を強調した。
論文 参考訳(メタデータ) (2022-10-26T14:12:24Z) - Robust and Adaptive Temporal-Difference Learning Using An Ensemble of
Gaussian Processes [70.80716221080118]
本稿では、時間差学習(TD)による政策評価の世代的視点について考察する。
OS-GPTDアプローチは、状態-逆ペアのシーケンスを観測することにより、与えられたポリシーの値関数を推定するために開発された。
1つの固定カーネルに関連する限られた表現性を緩和するために、GP前の重み付けアンサンブル(E)を用いて代替のスキームを生成する。
論文 参考訳(メタデータ) (2021-12-01T23:15:09Z) - Distribution-free uncertainty quantification for classification under
label shift [105.27463615756733]
2つの経路による分類問題に対する不確実性定量化(UQ)に焦点を当てる。
まず、ラベルシフトはカバレッジとキャリブレーションの低下を示すことでuqを損なうと論じる。
これらの手法を, 理論上, 分散性のない枠組みで検討し, その優れた実用性を示す。
論文 参考訳(メタデータ) (2021-03-04T20:51:03Z) - Private Prediction Sets [72.75711776601973]
機械学習システムは、個人のプライバシーの確実な定量化と保護を必要とする。
これら2つのデシラタを共同で扱う枠組みを提案する。
本手法を大規模コンピュータビジョンデータセット上で評価する。
論文 参考訳(メタデータ) (2021-02-11T18:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。