FedVAE: Trajectory privacy preserving based on Federated Variational AutoEncoder
- URL: http://arxiv.org/abs/2407.09239v1
- Date: Fri, 12 Jul 2024 13:10:59 GMT
- Title: FedVAE: Trajectory privacy preserving based on Federated Variational AutoEncoder
- Authors: Yuchen Jiang, Ying Wu, Shiyao Zhang, James J. Q. Yu,
- Abstract summary: Location-Based Services (LBS) capitalize on trajectory data to offer users personalized services tailored to their location information.
To address this challenge, privacy-preserving methods like K-anonymity and Differential Privacy have been proposed to safeguard private information in the dataset.
We propose a Federated Variational AutoEncoder (FedVAE) approach, which effectively generates a new trajectory dataset while preserving the confidentiality of private information and retaining the structure of the original features.
- Score: 30.787270605742883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of trajectory data with abundant spatial-temporal information is pivotal in Intelligent Transport Systems (ITS) and various traffic system tasks. Location-Based Services (LBS) capitalize on this trajectory data to offer users personalized services tailored to their location information. However, this trajectory data contains sensitive information about users' movement patterns and habits, necessitating confidentiality and protection from unknown collectors. To address this challenge, privacy-preserving methods like K-anonymity and Differential Privacy have been proposed to safeguard private information in the dataset. Despite their effectiveness, these methods can impact the original features by introducing perturbations or generating unrealistic trajectory data, leading to suboptimal performance in downstream tasks. To overcome these limitations, we propose a Federated Variational AutoEncoder (FedVAE) approach, which effectively generates a new trajectory dataset while preserving the confidentiality of private information and retaining the structure of the original features. In addition, FedVAE leverages Variational AutoEncoder (VAE) to maintain the original feature space and generate new trajectory data, and incorporates Federated Learning (FL) during the training stage, ensuring that users' data remains locally stored to protect their personal information. The results demonstrate its superior performance compared to other existing methods, affirming FedVAE as a promising solution for enhancing data privacy and utility in location-based applications.
Related papers
- Synergizing Privacy and Utility in Data Analytics Through Advanced Information Theorization [2.28438857884398]
We introduce three sophisticated algorithms: a Noise-Infusion Technique tailored for high-dimensional image data, a Variational Autoencoder (VAE) for robust feature extraction and an Expectation Maximization (EM) approach optimized for structured data privacy.
Our methods significantly reduce mutual information between sensitive attributes and transformed data, thereby enhancing privacy.
The research contributes to the field by providing a flexible and effective strategy for deploying privacy-preserving algorithms across various data types.
arXiv Detail & Related papers (2024-04-24T22:58:42Z) - Differentially Private GANs for Generating Synthetic Indoor Location Data [0.09831489366502298]
We introduce an indoor localization framework employing DPGANs in order to generate privacy-preserving indoor location data.
We evaluate the performance of our framework on a real-world indoor localization dataset.
arXiv Detail & Related papers (2024-04-10T21:43:27Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Personalized Federated Learning with Attention-based Client Selection [57.71009302168411]
We propose FedACS, a new PFL algorithm with an Attention-based Client Selection mechanism.
FedACS integrates an attention mechanism to enhance collaboration among clients with similar data distributions.
Experiments on CIFAR10 and FMNIST validate FedACS's superiority.
arXiv Detail & Related papers (2023-12-23T03:31:46Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - A Trajectory K-Anonymity Model Based on Point Density and Partition [0.0]
This paper develops a trajectory K-anonymity model based on Point Density and Partition (K PDP)
It successfully resists re-identification attacks and reduces the data utility loss of the k-anonymized dataset.
arXiv Detail & Related papers (2023-07-31T17:10:56Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation.
This work proposes a novel FL framework that requires only partial GAN model sharing.
Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions.
arXiv Detail & Related papers (2023-05-19T05:39:40Z) - Over-the-Air Federated Learning with Privacy Protection via Correlated
Additive Perturbations [57.20885629270732]
We consider privacy aspects of wireless federated learning with Over-the-Air (OtA) transmission of gradient updates from multiple users/agents to an edge server.
Traditional perturbation-based methods provide privacy protection while sacrificing the training accuracy.
In this work, we aim at minimizing privacy leakage to the adversary and the degradation of model accuracy at the edge server.
arXiv Detail & Related papers (2022-10-05T13:13:35Z) - Group privacy for personalized federated learning [4.30484058393522]
Federated learning is a type of collaborative machine learning, where participating clients process their data locally, sharing only updates to the collaborative model.
We propose a method to provide group privacy guarantees exploiting some key properties of $d$-privacy.
arXiv Detail & Related papers (2022-06-07T15:43:45Z) - LSTM-TrajGAN: A Deep Learning Approach to Trajectory Privacy Protection [2.1793134762413437]
We propose an end-to-end deep learning model to generate privacy-preserving synthetic trajectory data for data sharing and publication.
The model is evaluated on the trajectory-user-linking task on a real-world semantic trajectory dataset.
arXiv Detail & Related papers (2020-06-14T03:04:19Z) - TIPRDC: Task-Independent Privacy-Respecting Data Crowdsourcing Framework
for Deep Learning with Anonymized Intermediate Representations [49.20701800683092]
We present TIPRDC, a task-independent privacy-respecting data crowdsourcing framework with anonymized intermediate representation.
The goal of this framework is to learn a feature extractor that can hide the privacy information from the intermediate representations; while maximally retaining the original information embedded in the raw data for the data collector to accomplish unknown learning tasks.
arXiv Detail & Related papers (2020-05-23T06:21:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.