Counterfactual Explainable Incremental Prompt Attack Analysis on Large Language Models
- URL: http://arxiv.org/abs/2407.09292v2
- Date: Wed, 17 Jul 2024 16:23:28 GMT
- Title: Counterfactual Explainable Incremental Prompt Attack Analysis on Large Language Models
- Authors: Dong Shu, Mingyu Jin, Tianle Chen, Chong Zhang, Yongfeng Zhang,
- Abstract summary: This study sheds light on the imperative need to bolster safety and privacy measures in large language models (LLMs)
We propose Counterfactual Explainable Incremental Prompt Attack (CEIPA), a novel technique where we guide prompts in a specific manner to quantitatively measure attack effectiveness.
- Score: 32.03992137755351
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study sheds light on the imperative need to bolster safety and privacy measures in large language models (LLMs), such as GPT-4 and LLaMA-2, by identifying and mitigating their vulnerabilities through explainable analysis of prompt attacks. We propose Counterfactual Explainable Incremental Prompt Attack (CEIPA), a novel technique where we guide prompts in a specific manner to quantitatively measure attack effectiveness and explore the embedded defense mechanisms in these models. Our approach is distinctive for its capacity to elucidate the reasons behind the generation of harmful responses by LLMs through an incremental counterfactual methodology. By organizing the prompt modification process into four incremental levels: (word, sentence, character, and a combination of character and word) we facilitate a thorough examination of the susceptibilities inherent to LLMs. The findings from our study not only provide counterfactual explanation insight but also demonstrate that our framework significantly enhances the effectiveness of attack prompts.
Related papers
- Attention Tracker: Detecting Prompt Injection Attacks in LLMs [62.247841717696765]
Large Language Models (LLMs) have revolutionized various domains but remain vulnerable to prompt injection attacks.
We introduce the concept of the distraction effect, where specific attention heads shift focus from the original instruction to the injected instruction.
We propose Attention Tracker, a training-free detection method that tracks attention patterns on instruction to detect prompt injection attacks.
arXiv Detail & Related papers (2024-11-01T04:05:59Z) - Systematically Analyzing Prompt Injection Vulnerabilities in Diverse LLM Architectures [5.062846614331549]
This study systematically analyzes the vulnerability of 36 large language models (LLMs) to various prompt injection attacks.
Across 144 prompt injection tests, we observed a strong correlation between model parameters and vulnerability.
arXiv Detail & Related papers (2024-10-28T18:55:21Z) - Securing Large Language Models: Addressing Bias, Misinformation, and Prompt Attacks [12.893445918647842]
Large Language Models (LLMs) demonstrate impressive capabilities across various fields, yet their increasing use raises critical security concerns.
This article reviews recent literature addressing key issues in LLM security, with a focus on accuracy, bias, content detection, and vulnerability to attacks.
arXiv Detail & Related papers (2024-09-12T14:42:08Z) - Detecting and Understanding Vulnerabilities in Language Models via Mechanistic Interpretability [44.99833362998488]
Large Language Models (LLMs) have shown impressive performance across a wide range of tasks.
LLMs in particular are known to be vulnerable to adversarial attacks, where an imperceptible change to the input can mislead the output of the model.
We propose a method, based on Mechanistic Interpretability (MI) techniques, to guide this process.
arXiv Detail & Related papers (2024-07-29T09:55:34Z) - Defending Large Language Models Against Attacks With Residual Stream Activation Analysis [0.0]
Large Language Models (LLMs) are vulnerable to adversarial threats.
This paper presents an innovative defensive strategy, given white box access to an LLM.
We apply a novel methodology for analyzing distinctive activation patterns in the residual streams for attack prompt classification.
arXiv Detail & Related papers (2024-06-05T13:06:33Z) - Data Poisoning for In-context Learning [49.77204165250528]
In-context learning (ICL) has been recognized for its innovative ability to adapt to new tasks.
This paper delves into the critical issue of ICL's susceptibility to data poisoning attacks.
We introduce ICLPoison, a specialized attacking framework conceived to exploit the learning mechanisms of ICL.
arXiv Detail & Related papers (2024-02-03T14:20:20Z) - A Novel Evaluation Framework for Assessing Resilience Against Prompt Injection Attacks in Large Language Models [0.0]
This study introduces a novel framework for quantifying the resilience of applications.
The framework incorporates innovative techniques designed to ensure representativeness, interpretability, and robustness.
Results revealed that Llama2, the newer model exhibited higher resilience compared to ChatGLM.
arXiv Detail & Related papers (2024-01-02T02:06:48Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on
Large Language Models [82.98081731588717]
Integration of large language models with external content exposes applications to indirect prompt injection attacks.
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to evaluate the risk of such attacks.
We develop two black-box methods based on prompt learning and a white-box defense method based on fine-tuning with adversarial training.
arXiv Detail & Related papers (2023-12-21T01:08:39Z) - Defending Pre-trained Language Models as Few-shot Learners against
Backdoor Attacks [72.03945355787776]
We advocate MDP, a lightweight, pluggable, and effective defense for PLMs as few-shot learners.
We show analytically that MDP creates an interesting dilemma for the attacker to choose between attack effectiveness and detection evasiveness.
arXiv Detail & Related papers (2023-09-23T04:41:55Z) - Evaluating the Instruction-Following Robustness of Large Language Models
to Prompt Injection [70.28425745910711]
Large Language Models (LLMs) have demonstrated exceptional proficiency in instruction-following.
This capability brings with it the risk of prompt injection attacks.
We evaluate the robustness of instruction-following LLMs against such attacks.
arXiv Detail & Related papers (2023-08-17T06:21:50Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
Large language models (LLMs) present significant safety and ethical risks if exploited by malicious users.
Recent works have proposed algorithms to detect LLM-generated text and protect LLMs.
We study two types of attack strategies: 1) replacing certain words in an LLM's output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation.
arXiv Detail & Related papers (2023-05-31T10:08:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.