Systematically Analyzing Prompt Injection Vulnerabilities in Diverse LLM Architectures
- URL: http://arxiv.org/abs/2410.23308v1
- Date: Mon, 28 Oct 2024 18:55:21 GMT
- Title: Systematically Analyzing Prompt Injection Vulnerabilities in Diverse LLM Architectures
- Authors: Victoria Benjamin, Emily Braca, Israel Carter, Hafsa Kanchwala, Nava Khojasteh, Charly Landow, Yi Luo, Caroline Ma, Anna Magarelli, Rachel Mirin, Avery Moyer, Kayla Simpson, Amelia Skawinski, Thomas Heverin,
- Abstract summary: This study systematically analyzes the vulnerability of 36 large language models (LLMs) to various prompt injection attacks.
Across 144 prompt injection tests, we observed a strong correlation between model parameters and vulnerability.
- Score: 5.062846614331549
- License:
- Abstract: This study systematically analyzes the vulnerability of 36 large language models (LLMs) to various prompt injection attacks, a technique that leverages carefully crafted prompts to elicit malicious LLM behavior. Across 144 prompt injection tests, we observed a strong correlation between model parameters and vulnerability, with statistical analyses, such as logistic regression and random forest feature analysis, indicating that parameter size and architecture significantly influence susceptibility. Results revealed that 56 percent of tests led to successful prompt injections, emphasizing widespread vulnerability across various parameter sizes, with clustering analysis identifying distinct vulnerability profiles associated with specific model configurations. Additionally, our analysis uncovered correlations between certain prompt injection techniques, suggesting potential overlaps in vulnerabilities. These findings underscore the urgent need for robust, multi-layered defenses in LLMs deployed across critical infrastructure and sensitive industries. Successful prompt injection attacks could result in severe consequences, including data breaches, unauthorized access, or misinformation. Future research should explore multilingual and multi-step defenses alongside adaptive mitigation strategies to strengthen LLM security in diverse, real-world environments.
Related papers
- LLMs in Software Security: A Survey of Vulnerability Detection Techniques and Insights [12.424610893030353]
Large Language Models (LLMs) are emerging as transformative tools for software vulnerability detection.
This paper provides a detailed survey of LLMs in vulnerability detection.
We address challenges such as cross-language vulnerability detection, multimodal data integration, and repository-level analysis.
arXiv Detail & Related papers (2025-02-10T21:33:38Z) - On the Validity of Traditional Vulnerability Scoring Systems for Adversarial Attacks against LLMs [0.0]
The study explores the influence of both general and specific metric factors in determining vulnerability scores.
The attacks, sourced from various research papers, and obtained through online databases, were evaluated using multiple vulnerability metrics.
arXiv Detail & Related papers (2024-12-28T09:08:37Z) - Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
This survey collects and analyzes the different threats faced by large language models-based agents.
We identify six key features of LLM-based agents, based on which we summarize the current research progress.
We select four representative agents as case studies to analyze the risks they may face in practical use.
arXiv Detail & Related papers (2024-11-14T15:40:04Z) - Securing Large Language Models: Addressing Bias, Misinformation, and Prompt Attacks [12.893445918647842]
Large Language Models (LLMs) demonstrate impressive capabilities across various fields, yet their increasing use raises critical security concerns.
This article reviews recent literature addressing key issues in LLM security, with a focus on accuracy, bias, content detection, and vulnerability to attacks.
arXiv Detail & Related papers (2024-09-12T14:42:08Z) - Investigating Coverage Criteria in Large Language Models: An In-Depth Study Through Jailbreak Attacks [10.909463767558023]
We propose an innovative approach for the real-time detection of jailbreak attacks by utilizing neural activation features.
Our method holds promise for future systems integrating LLMs, offering robust real-time detection capabilities.
arXiv Detail & Related papers (2024-08-27T17:14:21Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - Counterfactual Explainable Incremental Prompt Attack Analysis on Large Language Models [32.03992137755351]
This study sheds light on the imperative need to bolster safety and privacy measures in large language models (LLMs)
We propose Counterfactual Explainable Incremental Prompt Attack (CEIPA), a novel technique where we guide prompts in a specific manner to quantitatively measure attack effectiveness.
arXiv Detail & Related papers (2024-07-12T14:26:14Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - Defending Pre-trained Language Models as Few-shot Learners against
Backdoor Attacks [72.03945355787776]
We advocate MDP, a lightweight, pluggable, and effective defense for PLMs as few-shot learners.
We show analytically that MDP creates an interesting dilemma for the attacker to choose between attack effectiveness and detection evasiveness.
arXiv Detail & Related papers (2023-09-23T04:41:55Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.