Systematically Analyzing Prompt Injection Vulnerabilities in Diverse LLM Architectures
- URL: http://arxiv.org/abs/2410.23308v1
- Date: Mon, 28 Oct 2024 18:55:21 GMT
- Title: Systematically Analyzing Prompt Injection Vulnerabilities in Diverse LLM Architectures
- Authors: Victoria Benjamin, Emily Braca, Israel Carter, Hafsa Kanchwala, Nava Khojasteh, Charly Landow, Yi Luo, Caroline Ma, Anna Magarelli, Rachel Mirin, Avery Moyer, Kayla Simpson, Amelia Skawinski, Thomas Heverin,
- Abstract summary: This study systematically analyzes the vulnerability of 36 large language models (LLMs) to various prompt injection attacks.
Across 144 prompt injection tests, we observed a strong correlation between model parameters and vulnerability.
- Score: 5.062846614331549
- License:
- Abstract: This study systematically analyzes the vulnerability of 36 large language models (LLMs) to various prompt injection attacks, a technique that leverages carefully crafted prompts to elicit malicious LLM behavior. Across 144 prompt injection tests, we observed a strong correlation between model parameters and vulnerability, with statistical analyses, such as logistic regression and random forest feature analysis, indicating that parameter size and architecture significantly influence susceptibility. Results revealed that 56 percent of tests led to successful prompt injections, emphasizing widespread vulnerability across various parameter sizes, with clustering analysis identifying distinct vulnerability profiles associated with specific model configurations. Additionally, our analysis uncovered correlations between certain prompt injection techniques, suggesting potential overlaps in vulnerabilities. These findings underscore the urgent need for robust, multi-layered defenses in LLMs deployed across critical infrastructure and sensitive industries. Successful prompt injection attacks could result in severe consequences, including data breaches, unauthorized access, or misinformation. Future research should explore multilingual and multi-step defenses alongside adaptive mitigation strategies to strengthen LLM security in diverse, real-world environments.
Related papers
- Attention Tracker: Detecting Prompt Injection Attacks in LLMs [62.247841717696765]
Large Language Models (LLMs) have revolutionized various domains but remain vulnerable to prompt injection attacks.
We introduce the concept of the distraction effect, where specific attention heads shift focus from the original instruction to the injected instruction.
We propose Attention Tracker, a training-free detection method that tracks attention patterns on instruction to detect prompt injection attacks.
arXiv Detail & Related papers (2024-11-01T04:05:59Z) - Securing Large Language Models: Addressing Bias, Misinformation, and Prompt Attacks [12.893445918647842]
Large Language Models (LLMs) demonstrate impressive capabilities across various fields, yet their increasing use raises critical security concerns.
This article reviews recent literature addressing key issues in LLM security, with a focus on accuracy, bias, content detection, and vulnerability to attacks.
arXiv Detail & Related papers (2024-09-12T14:42:08Z) - Investigating Coverage Criteria in Large Language Models: An In-Depth Study Through Jailbreak Attacks [10.909463767558023]
We propose an innovative approach for the real-time detection of jailbreak attacks by utilizing neural activation features.
Our method holds promise for future systems integrating LLMs, offering robust real-time detection capabilities.
arXiv Detail & Related papers (2024-08-27T17:14:21Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - Counterfactual Explainable Incremental Prompt Attack Analysis on Large Language Models [32.03992137755351]
This study sheds light on the imperative need to bolster safety and privacy measures in large language models (LLMs)
We propose Counterfactual Explainable Incremental Prompt Attack (CEIPA), a novel technique where we guide prompts in a specific manner to quantitatively measure attack effectiveness.
arXiv Detail & Related papers (2024-07-12T14:26:14Z) - Assessing biomedical knowledge robustness in large language models by query-efficient sampling attacks [0.6282171844772422]
An increasing depth of parametric domain knowledge in large language models (LLMs) is fueling their rapid deployment in real-world applications.
The recent discovery of named entities as adversarial examples in natural language processing tasks raises questions about their potential impact on the knowledge robustness of pre-trained and finetuned LLMs.
We developed an embedding-space attack based on powerscaled distance-weighted sampling to assess the robustness of their biomedical knowledge.
arXiv Detail & Related papers (2024-02-16T09:29:38Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - Defending Pre-trained Language Models as Few-shot Learners against
Backdoor Attacks [72.03945355787776]
We advocate MDP, a lightweight, pluggable, and effective defense for PLMs as few-shot learners.
We show analytically that MDP creates an interesting dilemma for the attacker to choose between attack effectiveness and detection evasiveness.
arXiv Detail & Related papers (2023-09-23T04:41:55Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Poisoning Attacks and Defenses on Artificial Intelligence: A Survey [3.706481388415728]
Data poisoning attacks represent a type of attack that consists of tampering the data samples fed to the model during the training phase, leading to a degradation in the models accuracy during the inference phase.
This work compiles the most relevant insights and findings found in the latest existing literatures addressing this type of attacks.
A thorough assessment is performed on the reviewed works, comparing the effects of data poisoning on a wide range of ML models in real-world conditions.
arXiv Detail & Related papers (2022-02-21T14:43:38Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.