論文の概要: Systematic Categorization, Construction and Evaluation of New Attacks against Multi-modal Mobile GUI Agents
- arxiv url: http://arxiv.org/abs/2407.09295v3
- Date: Sun, 16 Mar 2025 07:13:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 21:00:36.701977
- Title: Systematic Categorization, Construction and Evaluation of New Attacks against Multi-modal Mobile GUI Agents
- Title(参考訳): マルチモーダルGUIエージェントに対する新たな攻撃の分類・構築・評価
- Authors: Yulong Yang, Xinshan Yang, Shuaidong Li, Chenhao Lin, Zhengyu Zhao, Chao Shen, Tianwei Zhang,
- Abstract要約: 本稿では,マルチモーダルなモバイルGUIエージェントのセキュリティを体系的に調査し,既存の文献におけるこの重大なギャップに対処する。
我々は,(1)新たな脅威モデリング手法を提案し,34件の未報告攻撃の発見・実現可能性分析を行い,(2)これらの脅威を体系的に構築・評価するアタック・フレームワークを設計する。
- 参考スコア(独自算出の注目度): 16.559272781032632
- License:
- Abstract: The integration of Large Language Models (LLMs) and Multi-modal Large Language Models (MLLMs) into mobile GUI agents has significantly enhanced user efficiency and experience. However, this advancement also introduces potential security vulnerabilities that have yet to be thoroughly explored. In this paper, we present a systematic security investigation of multi-modal mobile GUI agents, addressing this critical gap in the existing literature. Our contributions are twofold: (1) we propose a novel threat modeling methodology, leading to the discovery and feasibility analysis of 34 previously unreported attacks, and (2) we design an attack framework to systematically construct and evaluate these threats. Through a combination of real-world case studies and extensive dataset-driven experiments, we validate the severity and practicality of those attacks, highlighting the pressing need for robust security measures in mobile GUI systems.
- Abstract(参考訳): モバイルGUIエージェントへのLLM(Large Language Models)とMLLM(Multi-modal Large Language Models)の統合により、ユーザ効率とエクスペリエンスが大幅に向上した。
しかし、この進歩は、まだ徹底的に調査されていない潜在的なセキュリティ脆弱性も導入する。
本稿では,マルチモーダルなモバイルGUIエージェントのセキュリティを体系的に調査し,既存の文献におけるこの重大なギャップに対処する。
我々は,(1)新たな脅威モデリング手法を提案し,34件の未報告攻撃の発見・実現可能性分析を行い,(2)これらの脅威を体系的に構築・評価するアタック・フレームワークを設計する。
実世界のケーススタディと大規模なデータセット駆動実験を組み合わせることで、これらの攻撃の深刻さと実用性を検証し、モバイルGUIシステムにおける堅牢なセキュリティ対策の必要性を強調します。
関連論文リスト
- Red-Teaming LLM Multi-Agent Systems via Communication Attacks [10.872328358364776]
大規模言語モデルに基づくマルチエージェントシステム(LLM-MAS)は、メッセージベースのコミュニケーションを通じて高度なエージェント協調を可能にすることで、複雑な問題解決能力に革命をもたらした。
エージェント・イン・ザ・ミドル(AiTM, Agent-in-the-Middle)は、エージェント間メッセージのインターセプトと操作によってLLM-MASの基本的な通信機構を利用する新たな攻撃法である。
論文 参考訳(メタデータ) (2025-02-20T18:55:39Z) - Automating Prompt Leakage Attacks on Large Language Models Using Agentic Approach [9.483655213280738]
本稿では,大規模言語モデル(LLM)の安全性を評価するための新しいアプローチを提案する。
我々は、プロンプトリークをLLMデプロイメントの安全性にとって重要な脅威と定義する。
我々は,協調エージェントが目的のLLMを探索・活用し,そのプロンプトを抽出するマルチエージェントシステムを実装した。
論文 参考訳(メタデータ) (2025-02-18T08:17:32Z) - Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks [88.84977282952602]
最近のMLセキュリティ文献は、整列型大規模言語モデル(LLM)に対する攻撃に焦点を当てている。
本稿では,LLMエージェントに特有のセキュリティとプライバシの脆弱性を分析する。
我々は、人気のあるオープンソースおよび商用エージェントに対する一連の実証的な攻撃を行い、その脆弱性の即時的な影響を実証した。
論文 参考訳(メタデータ) (2025-02-12T17:19:36Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - A Study on Prompt Injection Attack Against LLM-Integrated Mobile Robotic Systems [4.71242457111104]
大規模言語モデル(LLM)はマルチモーダルプロンプトを処理でき、よりコンテキスト対応の応答を生成することができる。
主な懸念事項の1つは、ロボットナビゲーションタスクでLLMを使用する際の潜在的なセキュリティリスクである。
本研究は,LPM統合システムにおける即時注入が移動ロボットの性能に及ぼす影響について検討する。
論文 参考訳(メタデータ) (2024-08-07T02:48:22Z) - Can We Trust Embodied Agents? Exploring Backdoor Attacks against Embodied LLM-based Decision-Making Systems [27.316115171846953]
大規模言語モデル(LLM)は、実世界のAI意思決定タスクにおいて大きな可能性を示している。
LLMは、固有の常識と推論能力を活用するために微調整され、特定の用途に適合する。
この微調整プロセスは、特に安全クリティカルなサイバー物理システムにおいて、かなりの安全性とセキュリティの脆弱性をもたらす。
論文 参考訳(メタデータ) (2024-05-27T17:59:43Z) - The Wolf Within: Covert Injection of Malice into MLLM Societies via an MLLM Operative [55.08395463562242]
MLLM(Multimodal Large Language Models)は、AGI(Artificial General Intelligence)の新たな境界を常に定義している。
本稿では,MLLM社会において,悪意のあるコンテンツの間接的伝播という新たな脆弱性について検討する。
論文 参考訳(メタデータ) (2024-02-20T23:08:21Z) - Highlighting the Safety Concerns of Deploying LLMs/VLMs in Robotics [54.57914943017522]
本稿では,大規模言語モデル (LLMs) と視覚言語モデル (VLMs) をロボティクスアプリケーションに統合する際のロバスト性と安全性に関する重要な課題を強調する。
論文 参考訳(メタデータ) (2024-02-15T22:01:45Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
機械学習(ML)は、IoT(Internet-of-Things)ベースのスマートグリッドでの使用頻度が高まっている。
電力信号に注入された逆方向の歪みは システムの正常な制御と操作に大きな影響を及ぼす
安全クリティカルパワーシステムに適用されたMLsgAPPの脆弱性評価を行うことが不可欠である。
論文 参考訳(メタデータ) (2023-08-30T03:29:26Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
大規模言語モデル(LLM)は、様々なアプリケーションに統合されつつある。
本稿では、プロンプトインジェクション攻撃を用いて、攻撃者が元の命令をオーバーライドし、制御を採用する方法を示す。
我々は、コンピュータセキュリティの観点から、影響や脆弱性を体系的に調査する包括的な分類法を導出する。
論文 参考訳(メタデータ) (2023-02-23T17:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。