論文の概要: HETOCompiler: An MLIR-based crypTOgraphic Compilation Framework for HEterogeneous Devices
- arxiv url: http://arxiv.org/abs/2407.09333v1
- Date: Fri, 12 Jul 2024 15:12:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-15 23:08:25.391651
- Title: HETOCompiler: An MLIR-based crypTOgraphic Compilation Framework for HEterogeneous Devices
- Title(参考訳): HETOコンパイラ:ヘテロジニアスデバイスのためのMLIRベースのCryptographic Compilationフレームワーク
- Authors: Zhiyuan Tan, Liutong Han, Mingjie Xing, Yanjun Wu,
- Abstract要約: HETOCompilerは、異種システム用に設計された新しい暗号コンパイルフレームワークである。
HETOCompilerは、暗号プリミティブと異種コンピューティングモデルのための構文とセマンティクスを抽象化する。
実験の結果、既存のOpenSSLライブラリよりも大幅にパフォーマンスが向上した。
- 参考スコア(独自算出の注目度): 8.06660833012594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hash algorithms are fundamental tools in cryptography, offering irreversible and sensitive transformations of input data for various security purposes. As computing architectures evolve towards heterogeneous systems, efficiently harnessing diverse computing resources for hash encryption algorithms becomes crucial. This paper presents HETOCompiler, a novel cryptography compilation framework designed for heterogeneous systems. Leveraging Multi-Level Intermediate Representation (MLIR), HETOCompiler abstracts syntax and semantics for cryptographic primitives and heterogeneous computing models, facilitating efficient compilation of high-level hash encryption algorithms into executable programs compatible with diverse devices. Experimental results demonstrate significant performance improvements over existing OpenSSL library, with average enhancements of 49.3x, 1.5x, and 23.4x for SHA-1, MD5, and SM3 algorithms respectively.
- Abstract(参考訳): ハッシュアルゴリズムは暗号の基本ツールであり、様々なセキュリティ目的のために入力データの不可逆かつ機密性の高い変換を提供する。
計算アーキテクチャが異種システムへと進化するにつれて、ハッシュ暗号化アルゴリズムに様々な計算資源を効率的に活用することが重要である。
本稿では,ヘテロジニアスシステム用に設計された新しい暗号コンパイルフレームワークであるHETOCompilerを提案する。
MLIR(Multi-Level Intermediate Representation)を利用することで、HETOCompilerは暗号プリミティブと異種コンピューティングモデルの構文とセマンティクスを抽象化し、ハイレベルハッシュ暗号化アルゴリズムを様々なデバイスと互換性のある実行可能プログラムに効率的にコンパイルできるようにする。
実験の結果、既存のOpenSSLライブラリに対して、それぞれSHA-1、MD5、SM3アルゴリズムに対して49.3x、1.5x、23.4xの平均的な拡張が実施された。
関連論文リスト
- EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
本稿では,新しいパイプラインスケジューラであるEPS-MoEを紹介する。
その結果,既存の並列推論手法に比べて,プリフィルスループットが平均21%向上していることが判明した。
論文 参考訳(メタデータ) (2024-10-16T05:17:49Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-30T15:57:14Z) - AxOMaP: Designing FPGA-based Approximate Arithmetic Operators using
Mathematical Programming [2.898055875927704]
FPGAの近似演算子を合成するための,データ解析による数学的プログラミングに基づく手法を提案する。
具体的には、特徴量データの相関解析の結果に基づいて、混合整数の2次制約付きプログラムを定式化する。
従来の進化的アルゴリズムによる最適化と比較して,PPAとBEHAVの併用最適化において,ハイパーボリュームの最大21%の改善が報告されている。
論文 参考訳(メタデータ) (2023-09-23T18:23:54Z) - CORE: Common Random Reconstruction for Distributed Optimization with
Provable Low Communication Complexity [110.50364486645852]
コミュニケーションの複雑さは、トレーニングをスピードアップし、マシン番号をスケールアップする上で、大きなボトルネックになっています。
本稿では,機械間で送信される情報を圧縮するための共通Om REOmを提案する。
論文 参考訳(メタデータ) (2023-09-23T08:45:27Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
この研究は、効率的でポータブルなDeep LearningとHigh Performance Computingカーネルを開発するためのフレームワークを導入している。
1)プロセッシングプリミティブ(TPP)を用いた計算コアの表現と,2)高レベルな宣言的手法でTPPのまわりの論理ループの表現の2つのステップでカーネルの開発を分解する。
我々は、スタンドアロンカーネルと、さまざまなCPUプラットフォームにおける最先端実装よりも優れたエンドツーエンドワークロードを使用して、このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-25T05:04:44Z) - Machine Learning-Driven Adaptive OpenMP For Portable Performance on
Heterogeneous Systems [1.885335997132172]
プログラムを新しい異種プラットフォームに適応させるのは面倒で、開発者は手動で実行パラメータの広大なスペースを探索する必要がある。
本稿では,機械学習による自律的適応のためのOpenMPの拡張を提案する。
私たちのソリューションには、新しい言語構成、コンパイラ変換、ランタイムサポートのセットが含まれています。
論文 参考訳(メタデータ) (2023-03-15T18:37:18Z) - Efficient and Sound Differentiable Programming in a Functional
Array-Processing Language [4.1779847272994495]
自動微分 (AD) はプログラムで表される関数の微分を計算する手法である。
本稿では,高次関数型配列処理言語のためのADシステムを提案する。
フォワードモードADによる計算は、逆モードと同じくらい効率的に行うことができる。
論文 参考訳(メタデータ) (2022-12-20T14:54:47Z) - H2H: Heterogeneous Model to Heterogeneous System Mapping with
Computation and Communication Awareness [16.244832640402496]
本稿では,計算と通信の双方を意識した新しいマッピングアルゴリズムを提案する。
通信の計算をわずかに交換することで、システム全体のレイテンシとエネルギー消費を大幅に削減することができる。
本研究の優れた性能は,MAESTROモデリングに基づいて評価される。
論文 参考訳(メタデータ) (2022-04-29T02:26:18Z) - Enabling Retargetable Optimizing Compilers for Quantum Accelerators via
a Multi-Level Intermediate Representation [78.8942067357231]
我々は、最適化され、再ターゲット可能で、事前コンパイルが可能なマルチレベル量子古典中間表現(IR)を提案する。
ゲートベースのOpenQASM 3言語全体をサポートし、共通量子プログラミングパターンのカスタム拡張と構文の改善を提供します。
私たちの研究は、通常のPythonのアプローチよりも1000倍高速で、スタンドアロンの量子言語コンパイラよりも5~10倍高速なコンパイル時間を実現しています。
論文 参考訳(メタデータ) (2021-09-01T17:29:47Z) - Parallel Scheduling Self-attention Mechanism: Generalization and
Optimization [0.76146285961466]
本稿では,SAT(Satisfiability check)ソルバによって解決された小インスタンスの最適スケジューリングから導いた一般スケジューリングアルゴリズムを提案する。
余剰計算をスキップする際のさらなる最適化戦略も推進され、元の計算の約25%と50%の削減が達成される。
提案アルゴリズムは、入力ベクトルの数がアーキテクチャで利用可能な演算ユニットの数に割り切れる限り、問題のサイズにかかわらず適用可能である。
論文 参考訳(メタデータ) (2020-12-02T12:04:16Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。