論文の概要: An Efficient Algorithm for Clustered Multi-Task Compressive Sensing
- arxiv url: http://arxiv.org/abs/2310.00420v1
- Date: Sat, 30 Sep 2023 15:57:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-05 04:30:51.768146
- Title: An Efficient Algorithm for Clustered Multi-Task Compressive Sensing
- Title(参考訳): クラスタ化マルチタスク圧縮センシングのための効率的アルゴリズム
- Authors: Alexander Lin and Demba Ba
- Abstract要約: クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 60.70532293880842
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper considers clustered multi-task compressive sensing, a hierarchical
model that solves multiple compressive sensing tasks by finding clusters of
tasks that leverage shared information to mutually improve signal
reconstruction. The existing inference algorithm for this model is
computationally expensive and does not scale well in high dimensions. The main
bottleneck involves repeated matrix inversion and log-determinant computation
for multiple large covariance matrices. We propose a new algorithm that
substantially accelerates model inference by avoiding the need to explicitly
compute these covariance matrices. Our approach combines Monte Carlo sampling
with iterative linear solvers. Our experiments reveal that compared to the
existing baseline, our algorithm can be up to thousands of times faster and an
order of magnitude more memory-efficient.
- Abstract(参考訳): 本稿では,共有情報を利用するタスクのクラスタを見つけ,相互に信号再構成を改善する階層モデルであるクラスタ化マルチタスク圧縮センシングについて検討する。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
主なボトルネックは、複数の大きな共分散行列に対する繰り返し行列反転と対数行列計算である。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
提案手法はモンテカルロサンプリングと反復線形解法を組み合わせたものである。
実験の結果,既存のベースラインと比較して,アルゴリズムは最大で数千倍高速で,メモリ効率は桁違いに高いことがわかった。
関連論文リスト
- MemoryFormer: Minimize Transformer Computation by Removing Fully-Connected Layers [43.39466934693055]
本稿では,新しい視点から計算複雑性(FLOP)を大幅に低減する,新しいトランスフォーマーアーキテクチャであるMemoryFormerを提案する。
これは、完全連結層の線形射影を置き換えるために、特徴変換の代替手法を利用することで実現される。
提案手法の有効性を示すため,様々なベンチマーク実験を行った。
論文 参考訳(メタデータ) (2024-11-20T02:41:53Z) - Approximating Metric Magnitude of Point Sets [4.522729058300309]
計量等級は、多くの望ましい幾何学的性質を持つ点雲の「大きさ」の尺度である。
様々な数学的文脈に適応しており、最近の研究は機械学習と最適化アルゴリズムを強化することを示唆している。
本稿では, 等級問題について検討し, 効率よく近似する方法を示し, 凸最適化問題として扱うことができるが, 部分モジュラ最適化としては適用できないことを示す。
本稿では,高速に収束し精度の高い反復近似アルゴリズムと,計算をより高速に行うサブセット選択法という,2つの新しいアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2024-09-06T17:15:28Z) - Efficient distributed representations with linear-time attention scores normalization [3.8673630752805437]
本研究では,有界ノルムを持つ埋め込みベクトルに対するアテンションスコア正規化定数の線形時間近似を提案する。
推定公式の精度は、競合するカーネルメソッドを桁違いに上回る。
提案アルゴリズムは高度に解釈可能であり,任意の埋め込み問題に容易に適応できる。
論文 参考訳(メタデータ) (2023-03-30T15:48:26Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
共分散行列の明示的な構成を避ける新しい推論手法を提案する。
本手法では, 数値線形代数と共役勾配アルゴリズムの対角線推定結果とを結合する。
いくつかのシミュレーションにおいて,本手法は計算時間とメモリにおける既存手法よりも拡張性が高い。
論文 参考訳(メタデータ) (2022-02-25T16:35:26Z) - Optimal Variable Clustering for High-Dimensional Matrix Valued Data [3.1138411427556445]
本稿では,行列形式で配置された特徴に対して,新しい潜在変数モデルを提案する。
軽度条件下では,高次元設定でクラスタリングの整合性が得られる。
この重みを使用すれば、アルゴリズムが最小値の速度最適化であることが保証されるという意味で、最適な重みを識別する。
論文 参考訳(メタデータ) (2021-12-24T02:13:04Z) - Covariance-Free Sparse Bayesian Learning [62.24008859844098]
共分散行列の明示的な反転を回避する新しいSBL推論アルゴリズムを導入する。
私たちの手法は、既存のベースラインよりも数千倍も高速です。
我々は,SBLが高次元信号回復問題に難なく対処できる新しいアルゴリズムについて紹介する。
論文 参考訳(メタデータ) (2021-05-21T16:20:07Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
我々は弱い教師付き回帰問題を解く。
weakly"の下では、いくつかのトレーニングポイントではラベルが知られ、未知のものもあれば、無作為なノイズの存在やリソースの欠如などの理由によって不確かであることが分かっています。
数値的な節ではモンテカルロモデルを用いて提案手法を人工と実のデータセットに適用した。
論文 参考訳(メタデータ) (2021-04-13T23:21:01Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
マルチビュースペクトルクラスタリングは、データ間の固有のクラスタ構造を効果的に明らかにすることができる。
本稿では,高次最適近傍ラプラシア行列を学習するマルチビュースペクトルクラスタリングアルゴリズムを提案する。
提案アルゴリズムは, 1次ベースと高次ベースの両方の線形結合の近傍を探索し, 最適ラプラシア行列を生成する。
論文 参考訳(メタデータ) (2020-08-31T12:28:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。