論文の概要: Graph Neural Network Causal Explanation via Neural Causal Models
- arxiv url: http://arxiv.org/abs/2407.09378v1
- Date: Fri, 12 Jul 2024 15:56:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-15 22:48:56.076718
- Title: Graph Neural Network Causal Explanation via Neural Causal Models
- Title(参考訳): ニューラルネットワーク因果モデルによるグラフニューラルネットワーク因果表現
- Authors: Arman Behnam, Binghui Wang,
- Abstract要約: グラフニューラルネットワーク(GNN)の説明者は、与えられたグラフの予測を保証する重要なサブグラフを特定する。
我々は、因果推論によるGNN因果説明器名を提案する。
名前は、正確な基礎的な説明の特定において、既存のGNN説明者よりもはるかに優れています。
- 参考スコア(独自算出の注目度): 14.288781140044465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural network (GNN) explainers identify the important subgraph that ensures the prediction for a given graph. Until now, almost all GNN explainers are based on association, which is prone to spurious correlations. We propose {\name}, a GNN causal explainer via causal inference. Our explainer is based on the observation that a graph often consists of a causal underlying subgraph. {\name} includes three main steps: 1) It builds causal structure and the corresponding structural causal model (SCM) for a graph, which enables the cause-effect calculation among nodes. 2) Directly calculating the cause-effect in real-world graphs is computationally challenging. It is then enlightened by the recent neural causal model (NCM), a special type of SCM that is trainable, and design customized NCMs for GNNs. By training these GNN NCMs, the cause-effect can be easily calculated. 3) It uncovers the subgraph that causally explains the GNN predictions via the optimized GNN-NCMs. Evaluation results on multiple synthetic and real-world graphs validate that {\name} significantly outperforms existing GNN explainers in exact groundtruth explanation identification
- Abstract(参考訳): グラフニューラルネットワーク(GNN)の説明者は、与えられたグラフの予測を保証する重要なサブグラフを特定する。
これまで、ほとんどのGNN説明者は関連性に基づいており、相関関係が急激になる傾向にある。
因果推論を用いたGNN因果説明器 {\name} を提案する。
我々の説明は、グラフがしばしば因果部分グラフからなるという観察に基づいている。
{\name} には3つの主要なステップがある。
1)グラフの因果構造とそれに対応する構造因果モデル(SCM)を構築し,ノード間の因果関係の計算を可能にする。
2)実世界のグラフの因果効果を直接計算することは困難である。
次に、トレーニング可能な特別なタイプのSCMである最近の神経因果モデル(NCM)によって啓蒙され、GNN用にカスタマイズされたNCMが設計される。
これらのGNN NCMを訓練することにより、原因効果を容易に計算できる。
3)最適化されたGNN-NCMを用いて,GNN予測を因果的に説明する部分グラフを明らかにする。
複数の合成および実世界のグラフによる評価結果から、既成のGNN説明器の正確な基礎的説明識別精度が著しく向上していることが確認された。
関連論文リスト
- Learning to Reweight for Graph Neural Network [63.978102332612906]
グラフニューラルネットワーク(GNN)は、グラフタスクに対して有望な結果を示す。
既存のGNNの一般化能力は、テストとトレーニンググラフデータの間に分散シフトが存在する場合に低下する。
本稿では,分布外一般化能力を大幅に向上させる非線形グラフデコリレーション法を提案する。
論文 参考訳(メタデータ) (2023-12-19T12:25:10Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - GANExplainer: GAN-based Graph Neural Networks Explainer [5.641321839562139]
グラフニューラルネットワーク(GNN)が、多くのアプリケーションにおいて、特定の予測を行う理由を説明することは重要である。
本稿では,GANアーキテクチャに基づくGANExplainerを提案する。
GANExplainerは、その代替案と比較して、説明精度を最大35%改善する。
論文 参考訳(メタデータ) (2022-12-30T23:11:24Z) - Explainability in subgraphs-enhanced Graph Neural Networks [12.526174412246107]
グラフ強化グラフニューラルネットワーク(SGNN)は,GNNの表現力を高めるために導入された。
本稿では, GNN の最近の解説者の一つである PGExplainer を SGNN に適用する。
本稿では,グラフ分類タスクにおけるSGNNの決定過程を説明することに成功していることを示す。
論文 参考訳(メタデータ) (2022-09-16T13:39:10Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
トレーニンググラフとテストグラフの分散シフトを考慮せずにグラフニューラルネットワーク(GNN)を提案する。
このような環境では、GNNは、たとえ素早い相関であるとしても、予測のためのトレーニングセットに存在する微妙な統計的相関を利用する傾向がある。
本稿では,スプリアス相関の影響を排除するため,StableGNNと呼ばれる一般的な因果表現フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-20T18:57:18Z) - Towards Self-Explainable Graph Neural Network [24.18369781999988]
グラフニューラルネットワーク(GNN)は、ディープニューラルネットワークをグラフ構造化データに一般化する。
GNNには説明責任がないため、モデルの透明性を求めるシナリオでは採用が制限される。
そこで本稿では,各未ラベルノードに対して$K$-nearestラベル付きノードを探索し,説明可能なノード分類を提案する。
論文 参考訳(メタデータ) (2021-08-26T22:45:11Z) - Jointly Attacking Graph Neural Network and its Explanations [50.231829335996814]
グラフニューラルネットワーク(GNN)は多くのグラフ関連タスクのパフォーマンスを向上した。
近年の研究では、GNNは敵の攻撃に対して非常に脆弱であることが示されており、敵はグラフを変更することでGNNの予測を誤認することができる。
本稿では、GNNモデルとその説明の両方を同時に利用して攻撃できる新しい攻撃フレームワーク(GEAttack)を提案する。
論文 参考訳(メタデータ) (2021-08-07T07:44:33Z) - Ego-GNNs: Exploiting Ego Structures in Graph Neural Networks [12.97622530614215]
Ego-GNNは、実世界のグラフにおける推移性の優位性を考えると、閉三角形を認識できることを示す。
特に、Ego-GNNは、実世界のグラフにおける推移性の優位性を考えると、閉三角形を認識することができることを示す。
論文 参考訳(メタデータ) (2021-07-22T23:42:23Z) - Generative Causal Explanations for Graph Neural Networks [39.60333255875979]
Gemは、さまざまなグラフ学習タスクで任意のGNNに対して解釈可能な説明を提供するモデルに依存しないアプローチです。
説明精度の相対的な向上を最大30%$で達成し、その最先端の代替品と比較して、説明プロセスを最大$ 10times $でスピードアップします。
論文 参考訳(メタデータ) (2021-04-14T06:22:21Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。