Deep Bag-of-Words Model: An Efficient and Interpretable Relevance Architecture for Chinese E-Commerce
- URL: http://arxiv.org/abs/2407.09395v1
- Date: Fri, 12 Jul 2024 16:18:05 GMT
- Title: Deep Bag-of-Words Model: An Efficient and Interpretable Relevance Architecture for Chinese E-Commerce
- Authors: Zhe Lin, Jiwei Tan, Dan Ou, Xi Chen, Shaowei Yao, Bo Zheng,
- Abstract summary: We propose deep Bag-of-Words (DeepBoW) model, an efficient and interpretable relevance architecture for Chinese e-commerce.
Our approach proposes to encode the query and the product into the sparse BoW representation, which is a set of word-weight pairs.
The relevance score is measured by the accumulation of the matched word between the sparse BoW representation of the query and the product.
- Score: 31.076432176267335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text relevance or text matching of query and product is an essential technique for the e-commerce search system to ensure that the displayed products can match the intent of the query. Many studies focus on improving the performance of the relevance model in search system. Recently, pre-trained language models like BERT have achieved promising performance on the text relevance task. While these models perform well on the offline test dataset, there are still obstacles to deploy the pre-trained language model to the online system as their high latency. The two-tower model is extensively employed in industrial scenarios, owing to its ability to harmonize performance with computational efficiency. Regrettably, such models present an opaque ``black box'' nature, which prevents developers from making special optimizations. In this paper, we raise deep Bag-of-Words (DeepBoW) model, an efficient and interpretable relevance architecture for Chinese e-commerce. Our approach proposes to encode the query and the product into the sparse BoW representation, which is a set of word-weight pairs. The weight means the important or the relevant score between the corresponding word and the raw text. The relevance score is measured by the accumulation of the matched word between the sparse BoW representation of the query and the product. Compared to popular dense distributed representation that usually suffers from the drawback of black-box, the most advantage of the proposed representation model is highly explainable and interventionable, which is a superior advantage to the deployment and operation of online search engines. Moreover, the online efficiency of the proposed model is even better than the most efficient inner product form of dense representation ...
Related papers
- Likelihood as a Performance Gauge for Retrieval-Augmented Generation [78.28197013467157]
We show that likelihoods serve as an effective gauge for language model performance.
We propose two methods that use question likelihood as a gauge for selecting and constructing prompts that lead to better performance.
arXiv Detail & Related papers (2024-11-12T13:14:09Z) - Improving Pinterest Search Relevance Using Large Language Models [15.24121687428178]
We integrate Large Language Models (LLMs) into our search relevance model.
Our approach uses search queries alongside content representations that include captions extracted from a generative visual language model.
We distill from the LLM-based model into real-time servable model architectures and features.
arXiv Detail & Related papers (2024-10-22T16:29:33Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
We propose a pioneering generAtive Cross-modal rEtrieval framework (ACE) for end-to-end cross-modal retrieval.
ACE achieves state-of-the-art performance in cross-modal retrieval and outperforms the strong baselines on Recall@1 by 15.27% on average.
arXiv Detail & Related papers (2024-06-25T12:47:04Z) - Robust Interaction-Based Relevance Modeling for Online e-Commerce Search [8.499253194630665]
Traditional text-matching techniques fail to capture the nuances of search intent accurately.
We introduce a robust interaction-based modeling paradigm to address these shortcomings.
To the best of our knowledge, this method is the first interaction-based approach for large e-commerce search relevance calculation.
arXiv Detail & Related papers (2024-06-04T09:24:04Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [71.85120354973073]
Click-Through Rate (CTR) prediction holds a paramount position in recommender systems.
Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs)
We propose textbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA) for CTR prediction.
arXiv Detail & Related papers (2024-05-17T07:43:25Z) - An Interpretable Ensemble of Graph and Language Models for Improving
Search Relevance in E-Commerce [22.449320058423886]
We propose Plug and Play Graph LAnguage Model (PP-GLAM), an explainable ensemble of plug and play models.
Our approach uses a modular framework with uniform data processing pipelines.
We show that PP-GLAM outperforms several state-of-the-art baselines and a proprietary model on real-world multilingual, multi-regional e-commerce datasets.
arXiv Detail & Related papers (2024-03-01T19:08:25Z) - Towards Better Query Classification with Multi-Expert Knowledge
Condensation in JD Ads Search [12.701416688678622]
shallow model FastText is widely used for efficient online inference.
BERT is an effective solution, but it will cause a higher online inference latency and more expensive computing costs.
We propose knowledge condensation to boost the classification performance of the online FastText model under strict low latency constraints.
arXiv Detail & Related papers (2023-08-02T12:05:01Z) - Improving Text Matching in E-Commerce Search with A Rationalizable,
Intervenable and Fast Entity-Based Relevance Model [78.80174696043021]
We propose a novel model called the Entity-Based Relevance Model (EBRM)
The decomposition allows us to use a Cross-encoder QE relevance module for high accuracy.
We also show that pretraining the QE module with auto-generated QE data from user logs can further improve the overall performance.
arXiv Detail & Related papers (2023-07-01T15:44:53Z) - A New Generation of Perspective API: Efficient Multilingual
Character-level Transformers [66.9176610388952]
We present the fundamentals behind the next version of the Perspective API from Google Jigsaw.
At the heart of the approach is a single multilingual token-free Charformer model.
We demonstrate that by forgoing static vocabularies, we gain flexibility across a variety of settings.
arXiv Detail & Related papers (2022-02-22T20:55:31Z) - Leveraging Advantages of Interactive and Non-Interactive Models for
Vector-Based Cross-Lingual Information Retrieval [12.514666775853598]
We propose a novel framework to leverage the advantages of interactive and non-interactive models.
We introduce semi-interactive mechanism, which builds our model upon non-interactive architecture but encodes each document together with its associated multilingual queries.
Our methods significantly boost the retrieval accuracy while maintaining the computational efficiency.
arXiv Detail & Related papers (2021-11-03T03:03:19Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.