論文の概要: ASTPrompter: Weakly Supervised Automated Language Model Red-Teaming to Identify Likely Toxic Prompts
- arxiv url: http://arxiv.org/abs/2407.09447v2
- Date: Fri, 18 Oct 2024 21:14:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 22:06:29.072564
- Title: ASTPrompter: Weakly Supervised Automated Language Model Red-Teaming to Identify Likely Toxic Prompts
- Title(参考訳): ASTPrompter: 毒なプロンプットを識別する言語モデルの再設計
- Authors: Amelia F. Hardy, Houjun Liu, Bernard Lange, Mykel J. Kochenderfer,
- Abstract要約: 凍結したディフェンダーから有害な出力を誘導するプロンプトを発見することができるレッドチームタスクの強化学習式を提案する。
我々は,GPT-2,GPT-2 XL,TinyLlamaディフェンダーから毒性を誘発する可能性(低難易度)のプロンプトを生成できることを示す。
- 参考スコア(独自算出の注目度): 33.774939728834156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Typical schemes for the automated red-teaming of large language models (LLMs) focus on discovering prompts that trigger a frozen language model (the defender) to generate toxic text. This often results in the prompting model (the adversary) producing text that is unintelligible and unlikely to arise. Here, we propose a reinforcement learning formulation of the LLM red-teaming task that allows us to discover prompts that both (1) trigger toxic outputs from a frozen defender and (2) have low perplexity as scored by that defender. We argue these cases are the most pertinent in a red-teaming setting because they are likely to arise during normal use of the defender model. We solve this formulation through a novel online and weakly supervised variant of Identity Preference Optimization (IPO) on GPT-2, GPT-2 XL, and TinyLlama defenders. We demonstrate that our policy is capable of generating likely (low-perplexity) prompts that also trigger toxicity from all of these architectures. Furthermore, we show that this policy outperforms baselines by producing attacks that are occur with higher probability and are more effective. Finally, we discuss our findings and the observed trade-offs between likelihood vs toxicity. Source code for this project is available for this project at: https://github.com/sisl/ASTPrompter/.
- Abstract(参考訳): 大規模言語モデル(LLM)の自動再チームの典型的なスキームは、凍結した言語モデル(ディフェンダー)をトリガーして有害なテキストを生成するプロンプトを発見することに焦点を当てている。
これはしばしば、不可知であり、起こりそうもないテキストを生成するプロンプトモデル(敵)を生み出します。
本稿では,(1)凍結したディフェンダーから有毒な出力を誘導するプロンプトと(2)そのディフェンダーが得点するパープレキシティの低いプロンプトの発見を可能にする,LDMレッドチームタスクの強化学習形式を提案する。
これらのケースは、ディフェンダーモデルの通常の使用中に発生する可能性が高いため、レッドチーム環境で最も重要なケースである、と我々は主張する。
我々は、GPT-2、GPT-2 XL、TinyLlamaディフェンダーによる、オンラインおよび弱教師付きIdentity Preference Optimization(IPO)によるこの定式化を解決する。
当社のポリシーは、これらすべてのアーキテクチャから毒性を引き起こす可能性のある(低複雑さ)プロンプトを生成することができることを実証しています。
さらに,このポリシーは,高い確率で発生し,より効果的である攻撃を発生させることにより,ベースラインよりも優れていることを示す。
最後に, 可能性と毒性のトレードオフについて検討した。
このプロジェクトのソースコードは、https://github.com/sisl/ASTPrompter/.comで入手できる。
関連論文リスト
- Generalized Adversarial Code-Suggestions: Exploiting Contexts of LLM-based Code-Completion [4.940253381814369]
逆のコード提案は、データ中毒によって導入することができ、したがって、モデル作成者が無意識に行うことができる。
本稿では、このような攻撃を一般化した定式化を行い、この領域における関連する研究を創出し、拡張する。
後者は新規でフレキシブルな攻撃戦略を生み出し、敵は特定のユーザーグループに対して最適なトリガーパターンを任意に選択できる。
論文 参考訳(メタデータ) (2024-10-14T14:06:05Z) - The Dark Side of Human Feedback: Poisoning Large Language Models via User Inputs [8.449922248196705]
我々は,アライメントトレーニング保護を貫くために,ユーザから供給されるプロンプトを介して,微妙ながら効果的な毒殺攻撃を行う。
我々の攻撃は、ブラックボックス設定における目標LLMの明示的な知識がなくても、報酬フィードバック機構を微妙に変更する。
これらの特殊なプロンプトの1%をデータに注入することにより、悪意のあるユーザを通して、特定のトリガーワードを使用する場合の毒性スコアを最大2倍に向上させる。
論文 参考訳(メタデータ) (2024-09-01T17:40:04Z) - Learning diverse attacks on large language models for robust red-teaming and safety tuning [126.32539952157083]
レッドチーム、あるいは有害な応答を誘発するプロンプトの特定は、大きな言語モデルの安全なデプロイを保証するための重要なステップである。
新規性と多様性を優先する明確な規則化であっても、既存のアプローチはモード崩壊または効果的な攻撃を発生させることができないことを示す。
我々は,GFlowNetの微調整と二次平滑化フェーズを用いて,多種多様な効果的な攻撃プロンプトを生成するために攻撃モデルを訓練することを提案する。
論文 参考訳(メタデータ) (2024-05-28T19:16:17Z) - Goal-guided Generative Prompt Injection Attack on Large Language Models [6.175969971471705]
大規模言語モデル(LLM)は、大規模ユーザ指向自然言語タスクの強力な基盤を提供する。
多数のユーザは、ユーザインターフェースを通じて、逆テキストや命令を容易に注入することができる。
これらの戦略が攻撃の成功率とどのように関係し、モデルセキュリティを効果的に改善するかは不明である。
論文 参考訳(メタデータ) (2024-04-06T06:17:10Z) - AutoDAN: Interpretable Gradient-Based Adversarial Attacks on Large
Language Models [55.748851471119906]
LLM(Large Language Models)の安全性の整合性は、手動のジェイルブレイク攻撃や(自動)敵攻撃によって損なわれる可能性がある。
最近の研究は、これらの攻撃に対する防御が可能であることを示唆している。敵攻撃は無限だが読めないジベリッシュプロンプトを生成し、難易度に基づくフィルタによって検出できる。
両攻撃の強度をマージする,解釈可能な勾配に基づく対向攻撃であるAutoDANを導入する。
論文 参考訳(メタデータ) (2023-10-23T17:46:07Z) - Universal and Transferable Adversarial Attacks on Aligned Language
Models [118.41733208825278]
本稿では,アライメント言語モデルに反抗的な振る舞いを生じさせる,シンプルで効果的な攻撃手法を提案する。
驚いたことに、我々のアプローチによって生じる敵のプロンプトは、かなり伝達可能である。
論文 参考訳(メタデータ) (2023-07-27T17:49:12Z) - Effective Prompt Extraction from Language Models [70.00099540536382]
本稿では,迅速な抽出攻撃の有効性を評価するための枠組みを提案する。
3つの異なるプロンプトと11の基盤となる大規模言語モデルによる実験では、単純なテキストベースの攻撃は、実際に高い確率でプロンプトを明らかにすることができる。
本フレームワークは,抽出したプロンプトがモデル幻覚ではなく実際の秘密プロンプトであるか否かを高精度に判定する。
論文 参考訳(メタデータ) (2023-07-13T16:15:08Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
大規模言語モデル(LLM)は、悪意のあるユーザによって悪用された場合、重大な安全性と倫理的リスクをもたらす。
近年,LLM生成テキストを検出し,LLMを保護するアルゴリズムが提案されている。
1) LLMの出力中の特定の単語を, 文脈が与えられたシノニムに置き換えること, 2) 生成者の書き方を変更するための指示プロンプトを自動で検索すること,である。
論文 参考訳(メタデータ) (2023-05-31T10:08:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。