論文の概要: Fast Proxies for LLM Robustness Evaluation
- arxiv url: http://arxiv.org/abs/2502.10487v1
- Date: Fri, 14 Feb 2025 11:15:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:13:34.774812
- Title: Fast Proxies for LLM Robustness Evaluation
- Title(参考訳): LLMロバスト性評価のための高速プロキシ
- Authors: Tim Beyer, Jan Schuchardt, Leo Schwinn, Stephan Günnemann,
- Abstract要約: 我々は,LLMの現実的ロバスト性を予測するための高速プロキシメトリクスと,シミュレーションされたアタッカーアンサンブルとの比較を行った。
これにより、攻撃自体の実行を必要とせずに、計算コストの高い攻撃に対するモデルの堅牢性を見積もることができる。
- 参考スコア(独自算出の注目度): 48.53873823665833
- License:
- Abstract: Evaluating the robustness of LLMs to adversarial attacks is crucial for safe deployment, yet current red-teaming methods are often prohibitively expensive. We compare the ability of fast proxy metrics to predict the real-world robustness of an LLM against a simulated attacker ensemble. This allows us to estimate a model's robustness to computationally expensive attacks without requiring runs of the attacks themselves. Specifically, we consider gradient-descent-based embedding-space attacks, prefilling attacks, and direct prompting. Even though direct prompting in particular does not achieve high ASR, we find that it and embedding-space attacks can predict attack success rates well, achieving $r_p=0.87$ (linear) and $r_s=0.94$ (Spearman rank) correlations with the full attack ensemble while reducing computational cost by three orders of magnitude.
- Abstract(参考訳): 敵攻撃に対するLDMの堅牢性を評価することは、安全な配置には不可欠であるが、現在のリピート方式は、しばしば違法に高価である。
我々は,LLMの現実的ロバスト性を予測するための高速プロキシメトリクスと,シミュレーションされたアタッカーアンサンブルとの比較を行った。
これにより、攻撃自体の実行を必要とせずに、計算コストの高い攻撃に対するモデルの堅牢性を見積もることができる。
具体的には、勾配差に基づく埋め込み空間攻撃、プリフィル攻撃、ダイレクトプロンプトについて検討する。
特に直接的プロンプトは高いASRを達成できないが、それと埋め込み空間攻撃は攻撃成功率を適切に予測し、$r_p=0.87$(線形)と$r_s=0.94$(スピアマンランク)を全攻撃アンサンブルと相関し、計算コストを3桁に削減できる。
関連論文リスト
- A Realistic Threat Model for Large Language Model Jailbreaks [87.64278063236847]
本研究では,ジェイルブレイク攻撃の原理的比較のための統一的脅威モデルを提案する。
私たちの脅威モデルは、パープレキシティの制約を組み合わせることで、ジェイルブレイクが自然のテキストからどれだけ逸脱するかを測定します。
我々は、この新しい現実的な脅威モデルに人気のある攻撃を適用する。
論文 参考訳(メタデータ) (2024-10-21T17:27:01Z) - Goal-guided Generative Prompt Injection Attack on Large Language Models [6.175969971471705]
大規模言語モデル(LLM)は、大規模ユーザ指向自然言語タスクの強力な基盤を提供する。
多数のユーザは、ユーザインターフェースを通じて、逆テキストや命令を容易に注入することができる。
これらの戦略が攻撃の成功率とどのように関係し、モデルセキュリティを効果的に改善するかは不明である。
論文 参考訳(メタデータ) (2024-04-06T06:17:10Z) - Attacking Large Language Models with Projected Gradient Descent [12.130638442765857]
逆数プロンプトの射影勾配 Descent (PGD) は、最先端の離散最適化よりも最大1桁高速である。
我々のLPM用PGDは、同じ破壊的な攻撃結果を達成するために、最先端の離散最適化よりも最大1桁高速である。
論文 参考訳(メタデータ) (2024-02-14T13:13:26Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
大規模言語モデル (LLM) は、有害なコンテンツを生成するためにLSMを誘導するレッド・チーム・アタックの影響を受けやすい。
本稿では、手動と自動の手法を組み合わせて、高品質な攻撃プロンプトを経済的に生成する統合的アプローチを提案する。
論文 参考訳(メタデータ) (2023-10-19T06:15:05Z) - Practical Evaluation of Adversarial Robustness via Adaptive Auto Attack [96.50202709922698]
実用的な評価手法は、便利な(パラメータフリー)、効率的な(イテレーションの少ない)、信頼性を持つべきである。
本稿では,パラメータフリーな適応オートアタック (A$3$) 評価手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T04:53:54Z) - Membership Inference Attacks From First Principles [24.10746844866869]
メンバシップ推論攻撃では、トレーニングされた機械学習モデルをクエリして、モデルのトレーニングデータセットに特定のサンプルが含まれているかどうかを予測することが可能になる。
これらの攻撃は現在、平均ケースの"精度"メトリクスを使用して評価されており、攻撃がトレーニングセットの任意のメンバを確実に識別できるかどうかを特徴付けることができない。
攻撃は偽陽性率の低い偽陽性率で計算することで評価されるべきであり、このような評価を行った場合、ほとんどの事前攻撃は不十分である。
我々の攻撃は偽陽性率の低いところで10倍強力であり、既存の指標に対する以前の攻撃を厳密に支配している。
論文 参考訳(メタデータ) (2021-12-07T08:47:00Z) - Composite Adversarial Attacks [57.293211764569996]
敵対攻撃は、機械学習(ML)モデルを欺くための技術です。
本論文では,攻撃アルゴリズムの最適組み合わせを自動的に探索するための複合攻撃法(Composite Adrial Attack,CAA)を提案する。
CAAは11の防衛でトップ10の攻撃を破り、時間の経過は少ない。
論文 参考訳(メタデータ) (2020-12-10T03:21:16Z) - RayS: A Ray Searching Method for Hard-label Adversarial Attack [99.72117609513589]
我々は、レイサーチ攻撃(RayS)を提案し、これはハードラベル攻撃の有効性と効率を大幅に改善する。
モデルの正当性チェックとしても使用できる。
論文 参考訳(メタデータ) (2020-06-23T07:01:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。