論文の概要: From Text to Life: On the Reciprocal Relationship between Artificial Life and Large Language Models
- arxiv url: http://arxiv.org/abs/2407.09502v1
- Date: Fri, 14 Jun 2024 07:45:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 13:38:25.558248
- Title: From Text to Life: On the Reciprocal Relationship between Artificial Life and Large Language Models
- Title(参考訳): テキストから人生へ:人工生命と大規模言語モデルとの相互関係について
- Authors: Eleni Nisioti, Claire Glanois, Elias Najarro, Andrew Dai, Elliot Meyerson, Joachim Winther Pedersen, Laetitia Teodorescu, Conor F. Hayes, Shyam Sudhakaran, Sebastian Risi,
- Abstract要約: 大規模言語モデル(LLM)は、AIの分野を嵐によって捉えてきたが、ALife(Artificial Life)分野への採用は、これまでは比較的限定的だった。
例えば、進化のオペレーターやオープンエンド環境の生成など、ALife研究のツールとしてのLLMの可能性を探る。
- 参考スコア(独自算出の注目度): 18.888208951616008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have taken the field of AI by storm, but their adoption in the field of Artificial Life (ALife) has been, so far, relatively reserved. In this work we investigate the potential synergies between LLMs and ALife, drawing on a large body of research in the two fields. We explore the potential of LLMs as tools for ALife research, for example, as operators for evolutionary computation or the generation of open-ended environments. Reciprocally, principles of ALife, such as self-organization, collective intelligence and evolvability can provide an opportunity for shaping the development and functionalities of LLMs, leading to more adaptive and responsive models. By investigating this dynamic interplay, the paper aims to inspire innovative crossover approaches for both ALife and LLM research. Along the way, we examine the extent to which LLMs appear to increasingly exhibit properties such as emergence or collective intelligence, expanding beyond their original goal of generating text, and potentially redefining our perception of lifelike intelligence in artificial systems.
- Abstract(参考訳): 大規模言語モデル(LLM)は、AIの分野を嵐によって捉えてきたが、ALife(Artificial Life)分野への採用は、これまでは比較的限定的だった。
本研究では,LLMとALifeのシナジーの可能性について検討する。
例えば、進化計算の演算子やオープンエンド環境の生成など、ALife研究のツールとしてのLLMの可能性を探る。
相互に、自己組織化、集団知性、進化可能性といったALifeの原則は、LSMの開発と機能を形成する機会を与え、より適応的で応答性の高いモデルをもたらす。
このダイナミックな相互作用を調査することにより,ALife と LLM の両研究において,革新的なクロスオーバーアプローチを実現することを目的としている。
その過程で、LLMが出現や集団知能などの特性を増し、テキスト生成という当初の目標を超えて拡張し、人工システムにおける生命のような知性に対する認識を再定義する可能性について検討する。
関連論文リスト
- On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
大規模な事前訓練されたモデルでは、推論や計画タスクのパフォーマンスがますます向上している。
我々は、直接的または間接的に、意思決定ポリシーを作成する能力を評価する。
未知の力学を持つ環境において、合成データを用いた微調整LDMが報酬モデリング能力を大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2024-10-08T03:12:57Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - A Survey on Self-Evolution of Large Language Models [116.54238664264928]
大規模言語モデル(LLM)は、様々な分野やインテリジェントエージェントアプリケーションにおいて大きく進歩している。
この問題に対処するために、LLMが自律的に獲得し、洗練し、モデル自身によって生成された経験から学ぶことができる自己進化的アプローチが急速に成長している。
論文 参考訳(メタデータ) (2024-04-22T17:43:23Z) - ChatGPT Alternative Solutions: Large Language Models Survey [0.0]
大規模言語モデル(LLM)はこの領域における研究貢献の急増に火をつけた。
近年、学術と産業のダイナミックな相乗効果が見られ、LLM研究の分野を新たな高地へと押し上げた。
この調査は、ジェネレーティブAIの現状をよく理解し、さらなる探索、強化、イノベーションの機会に光を当てている。
論文 参考訳(メタデータ) (2024-03-21T15:16:50Z) - Materials science in the era of large language models: a perspective [0.0]
大きな言語モデル(LLM)は、その印象的な能力によってかなりの関心を集めている。
この論文は、様々なタスクや規律にわたる曖昧な要求に対処する能力は、研究者を支援する強力なツールになり得ると論じている。
論文 参考訳(メタデータ) (2024-03-11T17:34:25Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - When large language models meet evolutionary algorithms [48.213640761641926]
事前訓練された大規模言語モデル(LLM)は、創造的な自然言語を生成する強力な能力を持つ。
進化的アルゴリズム(EA)は、複雑な現実世界の問題に対する多様な解決策を発見できる。
テキスト生成と進化の共通する集合性と方向性に動機づけられた本論文では,LLMとEAの並列性について述べる。
論文 参考訳(メタデータ) (2024-01-19T05:58:30Z) - Prototyping the use of Large Language Models (LLMs) for adult learning
content creation at scale [0.6628807224384127]
本稿では,Large Language Models (LLM) の非同期コース生成における利用について検討する。
LLMを利用したコースプロトタイプを開発し,ロバストなHuman-in-the-loopプロセスを実装した。
最初の発見は、このアプローチを採用することで、正確さや明快さを損なうことなく、コンテンツ作成を高速化できることを示している。
論文 参考訳(メタデータ) (2023-06-02T10:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。