Physics-Informed Learning of Characteristic Trajectories for Smoke Reconstruction
- URL: http://arxiv.org/abs/2407.09679v1
- Date: Fri, 12 Jul 2024 20:19:41 GMT
- Title: Physics-Informed Learning of Characteristic Trajectories for Smoke Reconstruction
- Authors: Yiming Wang, Siyu Tang, Mengyu Chu,
- Abstract summary: Existing physics-informed neural networks emphasize short-term physics constraints, leaving the proper preservation of long-term conservation less explored.
We introduce Neural Characteristic Trajectory Fields, a novel representation utilizing Eulerian neural fields to implicitly model Lagrangian fluid trajectories.
Building on the representation, we propose physics-informed trajectory learning and integration into NeRF-based scene reconstruction.
- Score: 17.634226193457277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We delve into the physics-informed neural reconstruction of smoke and obstacles through sparse-view RGB videos, tackling challenges arising from limited observation of complex dynamics. Existing physics-informed neural networks often emphasize short-term physics constraints, leaving the proper preservation of long-term conservation less explored. We introduce Neural Characteristic Trajectory Fields, a novel representation utilizing Eulerian neural fields to implicitly model Lagrangian fluid trajectories. This topology-free, auto-differentiable representation facilitates efficient flow map calculations between arbitrary frames as well as efficient velocity extraction via auto-differentiation. Consequently, it enables end-to-end supervision covering long-term conservation and short-term physics priors. Building on the representation, we propose physics-informed trajectory learning and integration into NeRF-based scene reconstruction. We enable advanced obstacle handling through self-supervised scene decomposition and seamless integrated boundary constraints. Our results showcase the ability to overcome challenges like occlusion uncertainty, density-color ambiguity, and static-dynamic entanglements. Code and sample tests are at \url{https://github.com/19reborn/PICT_smoke}.
Related papers
- Transport-Embedded Neural Architecture: Redefining the Landscape of physics aware neural models in fluid mechanics [0.0]
A physical problem, the Taylor-Green vortex, defined on a bi-periodic domain, is used as a benchmark to evaluate the performance of both the standard physics-informed neural network and our model.
Results exhibit that while the standard physics-informed neural network fails to predict the solution accurately and merely returns the initial condition for the entire time span, our model successfully captures the temporal changes in the physics.
arXiv Detail & Related papers (2024-10-05T10:32:51Z) - Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems [49.11170948406405]
State-of-the-art in automatic parameter estimation from video is addressed by training supervised deep networks on large datasets.
We propose a method to estimate the physical parameters of any known, continuous governing equation from single videos.
arXiv Detail & Related papers (2024-10-02T09:44:54Z) - Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling [70.34875558830241]
We present a way for learning a-temporal (4D) embedding, based on semantic semantic gears to allow for stratified modeling of dynamic regions of rendering the scene.
At the same time, almost for free, our tracking approach enables free-viewpoint of interest - a functionality not yet achieved by existing NeRF-based methods.
arXiv Detail & Related papers (2024-06-06T03:37:39Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Exploring Physical Latent Spaces for High-Resolution Flow Restoration [22.924868896246334]
We explore training deep neural network models in conjunction with physics simulations via partial differential equations (PDEs)
In contrast to previous work, this paper treats the degrees of freedom of the simulated space purely as tools to be used by the neural network.
arXiv Detail & Related papers (2022-11-21T09:41:18Z) - Physics-informed Deep Super-resolution for Spatiotemporal Data [18.688475686901082]
Deep learning can be used to augment scientific data based on coarse-grained simulations.
We propose a rich and efficient temporal super-resolution framework inspired by physics-informed learning.
Results demonstrate the superior effectiveness and efficiency of the proposed method compared with baseline algorithms.
arXiv Detail & Related papers (2022-08-02T13:57:35Z) - Physics Informed Neural Fields for Smoke Reconstruction with Sparse Data [73.8970871148949]
High-fidelity reconstruction of fluids from sparse multiview RGB videos remains a formidable challenge.
Existing solutions either assume knowledge of obstacles and lighting, or only focus on simple fluid scenes without obstacles or complex lighting.
We present the first method to reconstruct dynamic fluid by leveraging the governing physics (ie, Navier -Stokes equations) in an end-to-end optimization.
arXiv Detail & Related papers (2022-06-14T03:38:08Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.