Transport-Embedded Neural Architecture: Redefining the Landscape of physics aware neural models in fluid mechanics
- URL: http://arxiv.org/abs/2410.04114v1
- Date: Sat, 5 Oct 2024 10:32:51 GMT
- Title: Transport-Embedded Neural Architecture: Redefining the Landscape of physics aware neural models in fluid mechanics
- Authors: Amirmahdi Jafari,
- Abstract summary: A physical problem, the Taylor-Green vortex, defined on a bi-periodic domain, is used as a benchmark to evaluate the performance of both the standard physics-informed neural network and our model.
Results exhibit that while the standard physics-informed neural network fails to predict the solution accurately and merely returns the initial condition for the entire time span, our model successfully captures the temporal changes in the physics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces a new neural model which follows the transport equation by design. A physical problem, the Taylor-Green vortex, defined on a bi-periodic domain, is used as a benchmark to evaluate the performance of both the standard physics-informed neural network and our model (transport-embedded neural network). Results exhibit that while the standard physics-informed neural network fails to predict the solution accurately and merely returns the initial condition for the entire time span, our model successfully captures the temporal changes in the physics, particularly for high Reynolds numbers of the flow. Additionally, the ability of our model to prevent false minima can pave the way for addressing multiphysics problems, which are more prone to false minima, and help them accurately predict complex physics.
Related papers
- Physics Encoded Blocks in Residual Neural Network Architectures for Digital Twin Models [2.8720819157502344]
This paper presents a generic approach based on a novel physics-encoded residual neural network architecture.
Our method combines physics blocks as mathematical operators from physics-based models with learning blocks comprising feed-forward layers.
Compared to conventional neural network-based methods, our method improves generalizability with substantially low data requirements.
arXiv Detail & Related papers (2024-11-18T11:58:20Z) - Enhanced Spatiotemporal Prediction Using Physical-guided And Frequency-enhanced Recurrent Neural Networks [17.91230192726962]
This paper proposes a physical-guided neural network to estimate the Stemporal dynamics.
We also propose an adaptive second-order Runge-Kutta method with physical constraints to model the physical states more precisely.
Our model outperforms state-of-the-art methods and performs best in datasets, with a much smaller parameter count.
arXiv Detail & Related papers (2024-05-23T12:39:49Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
This work proposes a novel physics-informed neural network, KKT-hPINN, which rigorously guarantees hard linear equality constraints.
Experiments on Aspen models of a stirred-tank reactor unit, an extractive distillation subsystem, and a chemical plant demonstrate that this model can further enhance the prediction accuracy.
arXiv Detail & Related papers (2024-02-11T17:40:26Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
Image distortion by atmospheric turbulence is a critical problem in long-range optical imaging systems.
Fast and physics-grounded simulation tools have been introduced to help the deep-learning models adapt to real-world turbulence conditions.
This paper proposes the Physics-integrated Restoration Network (PiRN) to help the network to disentangle theity from the degradation and the underlying image.
arXiv Detail & Related papers (2023-07-20T05:49:21Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Physically Explainable CNN for SAR Image Classification [59.63879146724284]
In this paper, we propose a novel physics guided and injected neural network for SAR image classification.
The proposed framework comprises three parts: (1) generating physics guided signals using existing explainable models, (2) learning physics-aware features with physics guided network, and (3) injecting the physics-aware features adaptively to the conventional classification deep learning model for prediction.
The experimental results show that our proposed method substantially improve the classification performance compared with the counterpart data-driven CNN.
arXiv Detail & Related papers (2021-10-27T03:30:18Z) - ST-PCNN: Spatio-Temporal Physics-Coupled Neural Networks for Dynamics
Forecasting [15.265694039283106]
We propose a physics-coupled neural network model to learn parameters governing the physics of the system.
A-temporal physics-coupled neural network (ST-PCNN) model is proposed to achieve three goals.
Experiments, using simulated and field-collected ocean data, validate that ST-PCNN outperforms existing physics-informed models.
arXiv Detail & Related papers (2021-08-12T19:34:00Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.