論文の概要: Multi-Token Joint Speculative Decoding for Accelerating Large Language Model Inference
- arxiv url: http://arxiv.org/abs/2407.09722v1
- Date: Fri, 12 Jul 2024 23:29:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 21:08:35.977709
- Title: Multi-Token Joint Speculative Decoding for Accelerating Large Language Model Inference
- Title(参考訳): 大規模言語モデル推論の高速化のための多言語共同投機復号法
- Authors: Zongyue Qin, Ziniu Hu, Zifan He, Neha Prakriya, Jason Cong, Yizhou Sun,
- Abstract要約: 大規模言語モデル (LLM) は様々なタスクにおいてそのパワーを実証しているが、その推論にはかなりの時間とエネルギーコストがかかる。
投機的復号法は、より小さなモデルを用いて1つのトークン列を提案し、その後ターゲットの大モデルによってバッチで検証される。
自己回帰復号法と比較すると、投機的復号法は同じ数のトークンを生成し、大きなモデルの実行量は少ない。
投機的復号化よりも出力の難易度と効率性が良いアルゴリズムは、実際より有用である。
- 参考スコア(独自算出の注目度): 41.93955876156331
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer-based Large language models (LLMs) have demonstrated their power in various tasks, but their inference incurs significant time and energy costs. To accelerate LLM inference, speculative decoding uses a smaller model to propose one sequence of tokens, which are subsequently validated in batch by the target large model. Compared with autoregressive decoding, speculative decoding generates the same number of tokens with fewer runs of the large model, hence accelerating the overall inference by $1$-$2\times$. However, greedy decoding is not the optimal decoding algorithm in terms of output perplexity, which is a direct measurement of the effectiveness of a decoding algorithm. An algorithm that has better output perplexity and even better efficiency than speculative decoding can be more useful in practice. To achieve this seemingly contradictory goal, we first introduce multi-token joint greedy decoding (MJGD), which greedily generates multiple tokens at each step based on their joint perplexity. We show that it leads to better perplexity for the whole output. But the computation cost of MJGD is infeasible in practice. So we further propose multi-token joint speculative decoding (MJSD), which approximates and accelerates the MJGD from two aspects: it approximates the joint distribution of the large model with that of a small model, and uses a verification step to guarantee the accuracy of approximation; then it uses beam decoding to accelerate the sequence generation from the joint distribution. Compared with vanilla speculative decoding, MJSD has two advantages: (1) it is an approximation of MJGD, thus achieving better output perplexity; (2) verification with joint likelihood allows it to accept the longest prefix sub-sequence of the draft tokens with valid perplexity, leading to better efficiency...
- Abstract(参考訳): 変換器をベースとした大規模言語モデル(LLM)は、様々なタスクにおいてそのパワーを実証しているが、その推論にはかなりの時間とエネルギーコストがかかる。
LLM推論を高速化するために、投機的復号法はより小さなモデルを用いて1つのトークン列を提案し、その後ターゲットの大モデルによってバッチで検証される。
自己回帰復号法と比較すると、投機的復号法は同じ数のトークンを生成し、大きなモデルの実行量が少なくなるため、全体の推論を1ドルから2ドルに加速する。
しかし、greedy decodingは出力パープレキシティの観点からは最適な復号アルゴリズムではなく、復号アルゴリズムの有効性を直接測定する。
投機的復号化よりも出力の難易度と効率性が良いアルゴリズムは、実際より有用である。
この明らかに矛盾する目標を達成するために、まず、各ステップで複数のトークンを、その関節の難易度に基づいて重み付けして生成するマルチトークンジョイントグリーディデコーディング(MJGD)を導入する。
アウトプット全体の難易度が向上することを示す。
しかし、MJGDの計算コストは実際には実現不可能である。
そこで本研究では,MJGDの近似と高速化を両面から行うMJSDを提案する。MJGDは,大モデルと小モデルの結合分布を近似し,近似の精度を保証するための検証ステップを用い,ビームデコーディングを用いて関節分布からのシーケンス生成を高速化する。
バニラ投機復号法と比較すると、MJSDには2つの利点がある。(1)MJGDの近似であり、より良い出力パープレキシティを実現すること、(2)結合可能性による検証により、有効なパープレキシティを持つドラフトトークンの長いプレフィックスサブシーケンスを受け入れることができ、効率が向上する。
関連論文リスト
- A Theoretical Perspective for Speculative Decoding Algorithm [60.79447486066416]
EmphSpeculative Decodingは、小さなモデルを使用して、ドラフトトークンのシーケンスと、検証のための大きなモデルをサンプリングする。
本稿では,マルコフ連鎖抽象化による復号化問題を概念化し,理論的な観点から,鍵特性,エファンアウトプットの品質,推論加速度について考察する。
論文 参考訳(メタデータ) (2024-10-30T01:53:04Z) - SWIFT: On-the-Fly Self-Speculative Decoding for LLM Inference Acceleration [10.970637831760136]
投機的復号法(SD)は,大規模言語モデル(LLM)の推論を高速化するパラダイムとして広く用いられている。
本稿では,LLMの中間層を適応的に選択して推論時にスキップする,オンザフライの自己投機的復号アルゴリズムであるSWIFTを紹介する。
SWIFTは生成したテキストの元の分布を保ちながら1.3x-1.6xの高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-09T14:15:30Z) - MC-MoE: Mixture Compressor for Mixture-of-Experts LLMs Gains More [71.0473038084673]
我々は、Mixture-of-Experts大言語モデル(MoE-LLM)のためのトレーニング不要なMixture-CompressorであるMC-MoEを提案する。
MC-MoEは、専門家とトークンの両方の重要性を活用して極端な圧縮を実現する。
例えば、MC-MoEは2.54ビットで76.6%の圧縮を行い、平均精度損失は3.8%に過ぎなかった。
論文 参考訳(メタデータ) (2024-10-08T18:09:38Z) - Expediting and Elevating Large Language Model Reasoning via Hidden Chain-of-Thought Decoding [14.175444025026508]
大規模言語モデル(LLM)は、チェーン・オブ・シント(CoT)のプロンプトを必要とするタスクにおいて顕著な機能を示した。
完全なCoTプロセスを生成すると、出力シーケンスが大幅に長くなり、推論時の計算コストと遅延が増大する。
セマンティックアライメントによってCoTプロセスを圧縮し、CoT推論の利点を保ちながらより効率的な復号化を可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-13T06:29:20Z) - Speculative Diffusion Decoding: Accelerating Language Generation through Diffusion [59.17158389902231]
投機的復号化は,大規模言語モデル推論を高速化する手法として広く採用されている。
本稿では,離散拡散モデルを用いてドラフトシーケンスを生成する投機的復号法を提案する。
論文 参考訳(メタデータ) (2024-08-10T21:24:25Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
本稿では,複数連続するトークンを1つのフォワードパスで同時に復号する,新しい並列復号法,すなわちthithidden Transferを提案する。
加速度測定では,Medusa や Self-Speculative decoding など,単モデル加速技術よりも優れています。
論文 参考訳(メタデータ) (2024-04-18T09:17:06Z) - Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens [15.566726645722657]
投機的サンプリングに特化して設計された新しいフレームワークを提案する。
このフレームワーク内では、以前に生成されたトークンを効果的に活用し、後続の単語を予測する軽量なドラフトモデルを導入する。
我々は、バニラ自動回帰復号方式と比較して平均遅延速度比が2.7倍になるという印象的な結果を示した。
論文 参考訳(メタデータ) (2024-02-24T08:10:39Z) - DB-LLM: Accurate Dual-Binarization for Efficient LLMs [83.70686728471547]
大規模言語モデル(LLM)は自然言語処理の分野を著しく進歩させてきた。
既存の超低ビット量子化は、常に深刻な精度低下を引き起こす。
本稿では,LLM,すなわちDB-LLMのための新しいデュアルバイナライズ手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T09:04:30Z) - BiTA: Bi-Directional Tuning for Lossless Acceleration in Large Language
Models [37.09385961422664]
大規模言語モデル(LLM)は、推論中に自己回帰生成を使用することが多く、高いメモリ帯域幅要求と拡張レイテンシをもたらす。
半自己回帰生成とドラフト検証によるLCMの高速化手法であるBiTA(Bi-directional Tuning for Losless Acceleration)を提案する。
提案されたBiTA、LLaMA-2-70B-ChatはMT-Benchベンチマークで2.7$times$のスピードアップを達成した。
論文 参考訳(メタデータ) (2024-01-23T06:36:49Z) - MFTCoder: Boosting Code LLMs with Multitask Fine-Tuning [28.12788291168137]
複数のタスクを同時に並列に微調整できるマルチタスクファインチューニングフレームワーク MFTcoder を提案する。
実験により、我々のマルチタスクファインチューニングアプローチは、単一タスクにおける個々のファインチューニングと、混合タスクにおけるファインチューニングの両方より優れていることが示された。
論文 参考訳(メタデータ) (2023-11-04T02:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。