Textured-GS: Gaussian Splatting with Spatially Defined Color and Opacity
- URL: http://arxiv.org/abs/2407.09733v2
- Date: Tue, 10 Sep 2024 14:34:44 GMT
- Title: Textured-GS: Gaussian Splatting with Spatially Defined Color and Opacity
- Authors: Zhentao Huang, Minglun Gong,
- Abstract summary: We introduce Textured-GS, an innovative method for rendering Gaussian splatting that incorporates spatially defined color and opacity variations.
Our experiments show that Textured-GS consistently outperforms both the baseline Mini-Splatting and standard 3DGS in terms of visual fidelity.
- Score: 7.861993966048637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce Textured-GS, an innovative method for rendering Gaussian splatting that incorporates spatially defined color and opacity variations using Spherical Harmonics (SH). This approach enables each Gaussian to exhibit a richer representation by accommodating varying colors and opacities across its surface, significantly enhancing rendering quality compared to traditional methods. To demonstrate the merits of our approach, we have adapted the Mini-Splatting architecture to integrate textured Gaussians without increasing the number of Gaussians. Our experiments across multiple real-world datasets show that Textured-GS consistently outperforms both the baseline Mini-Splatting and standard 3DGS in terms of visual fidelity. The results highlight the potential of Textured-GS to advance Gaussian-based rendering technologies, promising more efficient and high-quality scene reconstructions.
Related papers
- GStex: Per-Primitive Texturing of 2D Gaussian Splatting for Decoupled Appearance and Geometry Modeling [None]
Gaussian splatting has demonstrated excellent performance for view synthesis and scene reconstruction.
Since each Gaussian primitive encodes both appearance and geometry, appearance modeling requires a number of Gaussian primitives.
We propose to employ perprimitive representation so that even a single Gaussian can be used to capture appearance details.
arXiv Detail & Related papers (2024-09-19T17:58:44Z) - Implicit Gaussian Splatting with Efficient Multi-Level Tri-Plane Representation [45.582869951581785]
Implicit Gaussian Splatting (IGS) is an innovative hybrid model that integrates explicit point clouds with implicit feature embeddings.
We introduce a level-based progressive training scheme, which incorporates explicit spatial regularization.
Our algorithm can deliver high-quality rendering using only a few MBs, effectively balancing storage efficiency and rendering fidelity.
arXiv Detail & Related papers (2024-08-19T14:34:17Z) - DeferredGS: Decoupled and Editable Gaussian Splatting with Deferred Shading [50.331929164207324]
We introduce DeferredGS, a method for decoupling and editing the Gaussian splatting representation using deferred shading.
Both qualitative and quantitative experiments demonstrate the superior performance of DeferredGS in novel view and editing tasks.
arXiv Detail & Related papers (2024-04-15T01:58:54Z) - HO-Gaussian: Hybrid Optimization of 3D Gaussian Splatting for Urban Scenes [24.227745405760697]
We propose a hybrid optimization method named HO-Gaussian, which combines a grid-based volume with the 3DGS pipeline.
Results on widely used autonomous driving datasets demonstrate that HO-Gaussian achieves photo-realistic rendering in real-time on multi-camera urban datasets.
arXiv Detail & Related papers (2024-03-29T07:58:21Z) - GauStudio: A Modular Framework for 3D Gaussian Splatting and Beyond [12.981928890478175]
GauStudio is a novel framework for modeling 3D Gaussian Splatting (3DGS)
We propose a hybrid Gaussian representation with foreground and skyball background models.
We also propose a novel render-then-fuse approach for high-fidelity mesh reconstruction from 3DGS inputs without fine-tuning.
arXiv Detail & Related papers (2024-03-28T17:47:31Z) - Mini-Splatting: Representing Scenes with a Constrained Number of Gaussians [4.733612131945549]
In this study, we explore the challenge of efficiently representing scenes with a constrained number of Gaussians.
We introduce strategies for densification including blur split and depth reinitialization, and simplification through intersection preserving and sampling.
Our Mini-Splatting integrates seamlessly with the originalization pipeline, providing a strong baseline for future research in Gaussian-Splatting-based works.
arXiv Detail & Related papers (2024-03-21T06:34:46Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - Mesh-based Gaussian Splatting for Real-time Large-scale Deformation [58.18290393082119]
It is challenging for users to directly deform or manipulate implicit representations with large deformations in the real-time fashion.
We develop a novel GS-based method that enables interactive deformation.
Our approach achieves high-quality reconstruction and effective deformation, while maintaining the promising rendering results at a high frame rate.
arXiv Detail & Related papers (2024-02-07T12:36:54Z) - GaussianStyle: Gaussian Head Avatar via StyleGAN [64.85782838199427]
We propose a novel framework that integrates the volumetric strengths of 3DGS with the powerful implicit representation of StyleGAN.
We show that our method achieves state-of-the-art performance in reenactment, novel view synthesis, and animation.
arXiv Detail & Related papers (2024-02-01T18:14:42Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
We propose GS-IR, a novel inverse rendering approach based on 3D Gaussian Splatting (GS)
We extend GS, a top-performance representation for novel view synthesis, to estimate scene geometry, surface material, and environment illumination from multi-view images captured under unknown lighting conditions.
The flexible and expressive GS representation allows us to achieve fast and compact geometry reconstruction, photorealistic novel view synthesis, and effective physically-based rendering.
arXiv Detail & Related papers (2023-11-26T02:35:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.