論文の概要: Sparse Asymptotic PCA: Identifying Sparse Latent Factors Across Time Horizon
- arxiv url: http://arxiv.org/abs/2407.09738v2
- Date: Tue, 21 Jan 2025 12:18:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:15:40.659743
- Title: Sparse Asymptotic PCA: Identifying Sparse Latent Factors Across Time Horizon
- Title(参考訳): スパース漸近性PCA : 時間軸におけるスパース潜伏因子の同定
- Authors: Zhaoxing Gao,
- Abstract要約: 本稿では、スパース主成分分析(APCA)を用いた新しいスパース潜在因子モデリングフレームワークを提案する。
スパースPCAをベースとした既存手法とは異なり,本手法は非スパース負荷を許容しながら,因子プロセスのスパース性を実証する。
我々は,新しい断面交叉検証法を用いて,時間的地平線上の危険因子の空間性を特定するためのデータ駆動型手法を開発した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper introduces a novel sparse latent factor modeling framework using sparse asymptotic Principal Component Analysis (APCA) to analyze the co-movements of high-dimensional panel data over time. Unlike existing methods based on sparse PCA, which assume sparsity in the loading matrices, our approach posits sparsity in the factor processes while allowing non-sparse loadings. This is motivated by the fact that financial returns typically exhibit universal and non-sparse exposure to market factors. Unlike the commonly used $\ell_1$-relaxation in sparse PCA, the proposed sparse APCA employs a truncated power method to estimate the leading sparse factor and a sequential deflation method for multi-factor cases under $\ell_0$-constraints. Furthermore, we develop a data-driven approach to identify the sparsity of risk factors over the time horizon using a novel cross-sectional cross-validation method. We establish the consistency of our estimators under mild conditions as both the dimension $N$ and the sample size $T$ grow. Monte Carlo simulations demonstrate that the proposed method performs well in finite samples. Empirically, we apply our method to daily S&P 500 stock returns (2004--2016) and identify nine risk factors influencing the stock market.
- Abstract(参考訳): 本稿では, スパース漸近的主成分分析(APCA)を用いて, 高次元パネルデータの協調動作を時間とともに解析する, 新規なスパース潜在因子モデリングフレームワークを提案する。
負荷行列の間隔を仮定するスパースPCAに基づく既存手法とは異なり,本手法は非スパース負荷を許容しながら因子過程の間隔を推定する。
これは、金融リターンが通常、市場要因に対する普遍的かつ非スパースな露出を示すという事実によって動機づけられている。
スパースPCAでよく使われる$\ell_1$-relaxationとは異なり、提案されたスパースAPCAは、先頭のスパース係数を推定するために切り詰められたパワー法と、$\ell_0$-constraintsの下での多要素ケースに対する逐次デフレレーション法を用いる。
さらに,新たなクロスセクション・クロスバリデーション手法を用いて,時間的地平線上でのリスク要因の空間性を特定するためのデータ駆動型手法を開発した。
軽度条件下での推定値の整合性は、次元$N$とサンプルサイズ$T$の両方が成長するとして確立する。
モンテカルロシミュレーションは、提案手法が有限標本でうまく動作することを示した。
実証的に,本手法を毎日のS&P500株リターン(2004-2016)に適用し,市場に影響を与える9つのリスク要因を特定した。
関連論文リスト
- Near-Optimal Learning and Planning in Separated Latent MDPs [70.88315649628251]
我々は、潜在マルコフ決定過程(LMDP)の計算的および統計的側面について研究する。
このモデルでは、学習者は、未知のMDPの混合から各エポックの開始時に描画されたMDPと相互作用する。
論文 参考訳(メタデータ) (2024-06-12T06:41:47Z) - On Minimum Trace Factor Analysis -- An Old Song Sung to a New Tune [0.0]
本稿では,1940年のリーダーマンの研究にさかのぼる根を持つ凸最適化法であるMTFA(Minimum Trace Factor Analysis)の緩和版を紹介する。
提案手法は,結果の低階部分空間の精度と,その行列を計算するアルゴリズムの収束率に関する理論的保証を提供する。
論文 参考訳(メタデータ) (2024-02-04T12:15:56Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
フェデレートラーニング(FL)は通常、サンプル比率によって決定される重み付けアプローチを使用して、クライアントモデルパラメータを集約する。
上記の重み付け法を,各局所モデルの一般化境界を考慮した新しい戦略に置き換える。
論文 参考訳(メタデータ) (2023-11-10T08:50:28Z) - A Tale of Sampling and Estimation in Discounted Reinforcement Learning [50.43256303670011]
割引平均推定問題に対して最小値の最小値を求める。
マルコフ過程の割引されたカーネルから直接サンプリングすることで平均を推定すると、説得力のある統計的性質が得られることを示す。
論文 参考訳(メタデータ) (2023-04-11T09:13:17Z) - Distributionally Robust Model-Based Offline Reinforcement Learning with
Near-Optimal Sample Complexity [39.886149789339335]
オフライン強化学習は、積極的に探索することなく、履歴データから意思決定を行うことを学習することを目的としている。
環境の不確実性や変動性から,デプロイされた環境が,ヒストリデータセットの収集に使用される名目上のものから逸脱した場合でも,良好に機能するロバストなポリシーを学ぶことが重要である。
オフラインRLの分布的ロバストな定式化を考察し、有限水平および無限水平の両方でクルバック・リーブラー発散によって指定された不確実性セットを持つロバストマルコフ決定過程に着目する。
論文 参考訳(メタデータ) (2022-08-11T11:55:31Z) - Generative Principal Component Analysis [47.03792476688768]
生成的モデリング仮定を用いた主成分分析の問題点を考察する。
鍵となる仮定は、基礎となる信号は、$k$次元の入力を持つ$L$-Lipschitz連続生成モデルの範囲に近いことである。
本稿では,2次推定器を提案し,検体数として$m$の次数$sqrtfracklog Lm$の統計率を示す。
論文 参考訳(メタデータ) (2022-03-18T01:48:16Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Pessimistic Q-Learning for Offline Reinforcement Learning: Towards
Optimal Sample Complexity [51.476337785345436]
有限水平マルコフ決定過程の文脈におけるQ-ラーニングの悲観的変種について検討する。
ほぼ最適サンプル複雑性を実現するために,分散再現型悲観的Q-ラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-28T15:39:36Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Prediction in latent factor regression: Adaptive PCR and beyond [2.9439848714137447]
我々は、大きなクラスの予測子のリスクバウンドを確立するマスター定理を証明する。
主定理を用いて、最小ノルム補間予測器の既知のリスク境界を復元する。
理論的結果を裏付け,補完するための詳細なシミュレーション研究を締めくくった。
論文 参考訳(メタデータ) (2020-07-20T12:42:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。