論文の概要: LLM-Collaboration on Automatic Science Journalism for the General Audience
- arxiv url: http://arxiv.org/abs/2407.09756v1
- Date: Sat, 13 Jul 2024 03:31:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 20:58:50.142848
- Title: LLM-Collaboration on Automatic Science Journalism for the General Audience
- Title(参考訳): LLM-Collaboration on Automatic Science Journalism for the General Audience
- Authors: Gongyao Jiang, Xinran Shi, Qiong Luo,
- Abstract要約: 科学ジャーナリズムは、現在の科学的発見を非専門主義者に報告している。
この課題は、聴衆が提示された研究に関する具体的な知識を欠いているため、難しくなる可能性がある。
本稿では,現実の書き込み-フィードバック-リビジョンワークフローを模倣した3つのLLMを統合するフレームワークを提案する。
- 参考スコア(独自算出の注目度): 3.591143309194537
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Science journalism reports current scientific discoveries to non-specialists, aiming to enable public comprehension of the state of the art. However, this task can be challenging as the audience often lacks specific knowledge about the presented research. To address this challenge, we propose a framework that integrates three LLMs mimicking the real-world writing-reading-feedback-revision workflow, with one LLM acting as the journalist, a smaller LLM as the general public reader, and the third LLM as an editor. The journalist's writing is iteratively refined by feedback from the reader and suggestions from the editor. Our experiments demonstrate that by leveraging the collaboration of two 7B and one 1.8B open-source LLMs, we can generate articles that are more accessible than those generated by existing methods, including advanced models such as GPT-4.
- Abstract(参考訳): 科学ジャーナリズムは、現在の科学的発見を非専門主義者に報告し、最先端の公衆の理解を可能にすることを目的としている。
しかし、この課題は、聴衆が提示された研究に関する具体的な知識を欠いている場合が多いため、困難である。
この課題に対処するため,本稿では,現実の書込み・フィードバック・リビジョンワークフローを模倣した3つのLLMを統合し,ジャーナリストとして1つのLLM,一般読者として1つの小型LLM,編集者として3番目のLLMを提案する。
ジャーナリストの執筆は、読者からのフィードバックと編集者からの提言によって反復的に洗練されている。
実験の結果,2つの 7B と 1 1.8B のオープンソース LLM の協調を利用して,GPT-4 などの先進モデルを含む既存手法よりもアクセスしやすい記事を生成することができた。
関連論文リスト
- From Test-Taking to Test-Making: Examining LLM Authoring of Commonsense Assessment Items [0.18416014644193068]
LLMをコモンセンス評価項目の著者とみなす。
我々はLLMに対して、コモンセンス推論のための顕著なベンチマークのスタイルでアイテムを生成するよう促す。
元のCOPAベンチマークの回答に成功するLCMも、自分自身の項目のオーサリングに成功していることがわかった。
論文 参考訳(メタデータ) (2024-10-18T22:42:23Z) - Can AI writing be salvaged? Mitigating Idiosyncrasies and Improving Human-AI Alignment in the Writing Process through Edits [39.00434175773803]
私たちはプロの作家を雇い、いくつかの創造的なドメインで段落を編集しました。
LAMPコーパス 1,057 LLM- generated paragraphs by professional writer based by our taxonomy。
LAMPの分析から,本研究で用いたLLMはいずれも,書字品質の面では優れていないことが明らかとなった。
論文 参考訳(メタデータ) (2024-09-22T16:13:00Z) - LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.45895712717612]
大規模言語モデル(LLM)は、様々な生成タスクにおいて顕著な汎用性を示している。
本研究は,NLP研究者を支援するLLMの話題に焦点を当てる。
私たちの知る限りでは、このような包括的な分析を提供するのはこれが初めてです。
論文 参考訳(メタデータ) (2024-06-24T01:30:22Z) - Breaking News: Case Studies of Generative AI's Use in Journalism [18.67676679963561]
本研究では、WildChatデータセットを閲覧することで、2つの報道機関によるジャーナリストとAIのインタラクションの研究を行う。
本稿では,ジャーナリストが他の機関からの資料や記事との機密通信などの機密資料をLCMに送付し,記事作成を促す事例を明らかにする。
本稿では,AIの活用に責任を負うものに関するさらなる研究と,ジャーナリストの文脈でLLMを使用するための明確なガイドラインとベストプラクティスの確立を求めている。
論文 参考訳(メタデータ) (2024-06-19T16:58:32Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - Prompting LLMs to Compose Meta-Review Drafts from Peer-Review Narratives
of Scholarly Manuscripts [6.2701471990853594]
大規模言語モデル(LLM)は、複数の専門家によるピアレビューの物語に基づいてメタレビューを生成することができる。
本稿では,3つのLLMを用いてメタレビューを自動的に生成するケーススタディを行う。
論文 参考訳(メタデータ) (2024-02-23T20:14:16Z) - DELL: Generating Reactions and Explanations for LLM-Based Misinformation Detection [50.805599761583444]
大規模な言語モデルは、事実性や幻覚の難しさによって制限され、ニュース記事の正確さを判断するために、棚外で直接使用される。
我々は,LLMをパイプラインの一部として組み込む誤情報検出の3つの重要な段階を同定するDellを提案する。
論文 参考訳(メタデータ) (2024-02-16T03:24:56Z) - Guiding LLM to Fool Itself: Automatically Manipulating Machine Reading
Comprehension Shortcut Triggers [76.77077447576679]
真のラベルに急激な相関関係を持つ機能によって引き起こされるショートカットは、機械読み取り(MRC)システムに対する潜在的な脅威として現れている。
サンプルにショートカットトリガーを追加するためのエディタをガイドするフレームワークを導入します。
GPT4をエディタとして使うと、LCMを騙すサンプルのトリガショートカットをうまく編集できる。
論文 参考訳(メタデータ) (2023-10-24T12:37:06Z) - Eva-KELLM: A New Benchmark for Evaluating Knowledge Editing of LLMs [54.22416829200613]
Eva-KELLMは、大規模言語モデルの知識編集を評価するための新しいベンチマークである。
実験結果から, 生文書を用いた知識編集手法は, 良好な結果を得るには有効ではないことが示唆された。
論文 参考訳(メタデータ) (2023-08-19T09:17:19Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
大規模言語モデル(LLM)は、最近自然言語処理タスクにおいて顕著な機能を示した。
本稿では, LLM関連概念の幅広い範囲について, 既存の文献について概説する。
論文 参考訳(メタデータ) (2023-07-12T20:01:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。