論文の概要: Asynchronous Feedback Network for Perceptual Point Cloud Quality Assessment
- arxiv url: http://arxiv.org/abs/2407.09806v2
- Date: Mon, 02 Dec 2024 05:18:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 20:22:51.238292
- Title: Asynchronous Feedback Network for Perceptual Point Cloud Quality Assessment
- Title(参考訳): 知覚点クラウド品質評価のための非同期フィードバックネットワーク
- Authors: Yujie Zhang, Qi Yang, Ziyu Shan, Yiling Xu,
- Abstract要約: 非同期フィードバック品質予測ネットワーク(AFQ-Net)を提案する。
AFQ-Netは人間の視覚知覚機構に動機付けられ、グローバルな特徴や局所的な特徴を扱うために二重ブランチ構造を採用している。
3つのデータセットに関する総合的な実験を行い、最先端のアプローチよりも優れた性能を実現する。
- 参考スコア(独自算出の注目度): 18.65004981045047
- License:
- Abstract: Recent years have witnessed the success of the deep learning-based technique in research of no-reference point cloud quality assessment (NR-PCQA). For a more accurate quality prediction, many previous studies have attempted to capture global and local features in a bottom-up manner, but ignored the interaction and promotion between them. To solve this problem, we propose a novel asynchronous feedback quality prediction network (AFQ-Net). Motivated by human visual perception mechanisms, AFQ-Net employs a dual-branch structure to deal with global and local features, simulating the left and right hemispheres of the human brain, and constructs a feedback module between them. Specifically, the input point clouds are first fed into a transformer-based global encoder to generate the attention maps that highlight these semantically rich regions, followed by being merged into the global feature. Then, we utilize the generated attention maps to perform dynamic convolution for different semantic regions and obtain the local feature. Finally, a coarse-to-fine strategy is adopted to merge the two features into the final quality score. We conduct comprehensive experiments on three datasets and achieve superior performance over the state-of-the-art approaches on all of these datasets. The code will be available at The code will be available at https://github.com/zhangyujie-1998/AFQ-Net.
- Abstract(参考訳): 近年,Non-Reference Point Cloud Quality Assessment (NR-PCQA) の研究において,ディープラーニングベースの手法が成功している。
より正確な品質予測のために、多くの過去の研究は、ボトムアップ方式でグローバルな特徴とローカルな特徴を捉えようとしたが、それらの相互作用と促進を無視した。
そこで本研究では,非同期フィードバック品質予測ネットワーク(AFQ-Net)を提案する。
AFQ-Netは人間の視覚知覚機構に動機付けられ、大域的および局所的な特徴を扱うために二重ブランチ構造を採用し、人間の脳の左右半球をシミュレートし、それらの間にフィードバックモジュールを構築する。
具体的には、入力ポイントクラウドをまずトランスフォーマーベースのグローバルエンコーダに入力し、これらのセマンティックにリッチな領域をハイライトするアテンションマップを生成し、続いてグローバル機能にマージする。
そして、生成した注目マップを用いて、異なる意味領域の動的畳み込みを行い、局所的な特徴を得る。
最後に、2つの特徴を最終品質スコアにマージするための粗い戦略が採用されている。
3つのデータセットに関する包括的な実験を行い、これらのデータセットに対する最先端のアプローチよりも優れたパフォーマンスを実現する。
コードはhttps://github.com/zhangyujie-1998/AFQ-Netで入手できる。
関連論文リスト
- PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
点とボクセルの表現の統合は、LiDARベースの3Dオブジェクト検出においてより一般的になりつつある。
PVAFN(Point-Voxel Attention Fusion Network)と呼ばれる新しい2段3次元物体検出器を提案する。
PVAFNはマルチプール戦略を使用して、マルチスケールとリージョン固有の情報を効果的に統合する。
論文 参考訳(メタデータ) (2024-08-26T19:43:01Z) - Global Attention-Guided Dual-Domain Point Cloud Feature Learning for Classification and Segmentation [21.421806351869552]
上記の問題に対処するために,グローバルアテンション誘導型デュアルドメイン特徴学習ネットワーク(GAD)を提案する。
我々はまず,改良されたグローバルアテンション機構を備えたコンテキスト位置強調変換器(CPT)モジュールを考案した。
次に、デュアルドメインK-アレスト隣のフィーチャーフュージョン(DKFF)をカスケードして、効果的なフィーチャーアグリゲーションを行う。
論文 参考訳(メタデータ) (2024-07-12T05:19:19Z) - TOPIQ: A Top-down Approach from Semantics to Distortions for Image
Quality Assessment [53.72721476803585]
画像品質評価(IQA)は、ディープニューラルネットワークによる顕著な進歩を目の当たりにしたコンピュータビジョンの基本課題である。
本稿では,高レベルの意味論を用いてIQAネットワークを誘導し,意味的に重要な局所歪み領域に注目するトップダウンアプローチを提案する。
提案手法の重要な要素は,低レベル特徴に対するアテンションマップを算出した,クロススケールアテンション機構である。
論文 参考訳(メタデータ) (2023-08-06T09:08:37Z) - Boundary-semantic collaborative guidance network with dual-stream
feedback mechanism for salient object detection in optical remote sensing
imagery [22.21644705244091]
二重ストリームフィードバック機構を備えた境界意味協調誘導ネットワーク(BSCGNet)を提案する。
BSCGNetは、近年提案されている17の最先端(SOTA)アプローチよりも優れた、挑戦的なシナリオにおいて、明確なアドバンテージを示している。
論文 参考訳(メタデータ) (2023-03-06T03:36:06Z) - Global-Local Context Network for Person Search [125.51080862575326]
パーソンサーチは、自然に切り刻まれた画像からクエリーを共同でローカライズし、識別することを目的としている。
我々は,対象人物を取り巻く環境情報を多様かつ局所的に利用し,それぞれがシーンとグループコンテキストを参照する。
本稿では,機能強化を目的としたグローバル・ローカル・コンテキスト・ネットワーク(GLCNet)を提案する。
論文 参考訳(メタデータ) (2021-12-05T07:38:53Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - Hierarchical Bi-Directional Feature Perception Network for Person
Re-Identification [12.259747100939078]
過去の人物再同定(Re-ID)モデルは、画像の最も識別性の高い領域に焦点を当てることを目的としている。
本稿では,階層型双方向特徴知覚ネットワーク (HBFP-Net) という新しいモデルを提案する。
Market-1501, CUHK03, DukeMTMC-ReIDデータセットなどの主要な評価実験により, 提案手法が最近のSOTA Re-IDモデルより優れていることが示された。
論文 参考訳(メタデータ) (2020-08-08T12:33:32Z) - Cross-Domain Facial Expression Recognition: A Unified Evaluation
Benchmark and Adversarial Graph Learning [85.6386289476598]
我々は,クロスドメイン全体的特徴共適応のための新しい逆グラフ表現適応(AGRA)フレームワークを開発した。
我々は,いくつかの一般的なベンチマークで広範囲かつ公平な評価を行い,提案したAGRAフレームワークが従来の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-08-03T15:00:31Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
我々は,低レベルな外観特徴,高レベルな意味特徴,グローバルな文脈特徴を統合化するための新しいネットワークGCPANetを提案する。
提案手法は, 定量的かつ定性的に, 最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-03-02T04:26:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。