LiveHPS++: Robust and Coherent Motion Capture in Dynamic Free Environment
- URL: http://arxiv.org/abs/2407.09833v1
- Date: Sat, 13 Jul 2024 10:04:45 GMT
- Title: LiveHPS++: Robust and Coherent Motion Capture in Dynamic Free Environment
- Authors: Yiming Ren, Xiao Han, Yichen Yao, Xiaoxiao Long, Yujing Sun, Yuexin Ma,
- Abstract summary: We introduce LiveHPS++, an innovative and effective solution based on a single LiDAR system.
Benefiting from three meticulously designed modules, our method can learn dynamic and kinematic features from human movements.
Our method has proven to significantly surpass existing state-of-the-art methods across various datasets.
- Score: 17.832694508927407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LiDAR-based human motion capture has garnered significant interest in recent years for its practicability in large-scale and unconstrained environments. However, most methods rely on cleanly segmented human point clouds as input, the accuracy and smoothness of their motion results are compromised when faced with noisy data, rendering them unsuitable for practical applications. To address these limitations and enhance the robustness and precision of motion capture with noise interference, we introduce LiveHPS++, an innovative and effective solution based on a single LiDAR system. Benefiting from three meticulously designed modules, our method can learn dynamic and kinematic features from human movements, and further enable the precise capture of coherent human motions in open settings, making it highly applicable to real-world scenarios. Through extensive experiments, LiveHPS++ has proven to significantly surpass existing state-of-the-art methods across various datasets, establishing a new benchmark in the field.
Related papers
- 3D Multi-Object Tracking with Semi-Supervised GRU-Kalman Filter [6.13623925528906]
3D Multi-Object Tracking (MOT) is essential for intelligent systems like autonomous driving and robotic sensing.
We propose a GRU-based MOT method, which introduces a learnable Kalman filter into the motion module.
This approach is able to learn object motion characteristics through data-driven learning, thereby avoiding the need for manual model design and model error.
arXiv Detail & Related papers (2024-11-13T08:34:07Z) - IMUDiffusion: A Diffusion Model for Multivariate Time Series Synthetisation for Inertial Motion Capturing Systems [0.0]
We propose IMUDiffusion, a probabilistic diffusion model specifically designed for time series generation.
Our approach enables the generation of high-quality time series sequences which accurately capture the dynamics of human activities.
In some cases, we are able to improve the macro F1-score by almost 30%.
arXiv Detail & Related papers (2024-11-05T09:53:52Z) - MoManifold: Learning to Measure 3D Human Motion via Decoupled Joint Acceleration Manifolds [20.83684434910106]
We present MoManifold, a novel human motion prior, which models plausible human motion in continuous high-dimensional motion space.
Specifically, we propose novel decoupled joint acceleration to model human dynamics from existing limited motion data.
Extensive experiments demonstrate that MoManifold outperforms existing SOTAs as a prior in several downstream tasks.
arXiv Detail & Related papers (2024-09-01T15:00:16Z) - Aligning Human Motion Generation with Human Perceptions [51.831338643012444]
We propose a data-driven approach to bridge the gap by introducing a large-scale human perceptual evaluation dataset, MotionPercept, and a human motion critic model, MotionCritic.
Our critic model offers a more accurate metric for assessing motion quality and could be readily integrated into the motion generation pipeline.
arXiv Detail & Related papers (2024-07-02T14:01:59Z) - EgoGaussian: Dynamic Scene Understanding from Egocentric Video with 3D Gaussian Splatting [95.44545809256473]
EgoGaussian is a method capable of simultaneously reconstructing 3D scenes and dynamically tracking 3D object motion from RGB egocentric input alone.
We show significant improvements in terms of both dynamic object and background reconstruction quality compared to the state-of-the-art.
arXiv Detail & Related papers (2024-06-28T10:39:36Z) - Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling [70.34875558830241]
We present a way for learning a-temporal (4D) embedding, based on semantic semantic gears to allow for stratified modeling of dynamic regions of rendering the scene.
At the same time, almost for free, our tracking approach enables free-viewpoint of interest - a functionality not yet achieved by existing NeRF-based methods.
arXiv Detail & Related papers (2024-06-06T03:37:39Z) - DEMOS: Dynamic Environment Motion Synthesis in 3D Scenes via Local
Spherical-BEV Perception [54.02566476357383]
We propose the first Dynamic Environment MOtion Synthesis framework (DEMOS) to predict future motion instantly according to the current scene.
We then use it to dynamically update the latent motion for final motion synthesis.
The results show our method outperforms previous works significantly and has great performance in handling dynamic environments.
arXiv Detail & Related papers (2024-03-04T05:38:16Z) - LiveHPS: LiDAR-based Scene-level Human Pose and Shape Estimation in Free
Environment [59.320414108383055]
We present LiveHPS, a novel single-LiDAR-based approach for scene-level human pose and shape estimation.
We propose a huge human motion dataset, named FreeMotion, which is collected in various scenarios with diverse human poses.
arXiv Detail & Related papers (2024-02-27T03:08:44Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.