論文の概要: Global Reinforcement Learning: Beyond Linear and Convex Rewards via Submodular Semi-gradient Methods
- arxiv url: http://arxiv.org/abs/2407.09905v1
- Date: Sat, 13 Jul 2024 14:45:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 20:18:01.892710
- Title: Global Reinforcement Learning: Beyond Linear and Convex Rewards via Submodular Semi-gradient Methods
- Title(参考訳): グローバル強化学習:部分モジュラー半勾配法による線形・凸リワードを超えて
- Authors: Riccardo De Santi, Manish Prajapat, Andreas Krause,
- Abstract要約: 我々はGlobal RL(GRL)を導入し、報酬は局所的な状態ではなく、トラジェクトリー上でグローバルに定義される。
部分モジュラ最適化からアイデアを活用することで,GRL問題を古典的RL問題列に変換する新しいアルゴリズムスキームを提案する。
- 参考スコア(独自算出の注目度): 42.04223902155739
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In classic Reinforcement Learning (RL), the agent maximizes an additive objective of the visited states, e.g., a value function. Unfortunately, objectives of this type cannot model many real-world applications such as experiment design, exploration, imitation learning, and risk-averse RL to name a few. This is due to the fact that additive objectives disregard interactions between states that are crucial for certain tasks. To tackle this problem, we introduce Global RL (GRL), where rewards are globally defined over trajectories instead of locally over states. Global rewards can capture negative interactions among states, e.g., in exploration, via submodularity, positive interactions, e.g., synergetic effects, via supermodularity, while mixed interactions via combinations of them. By exploiting ideas from submodular optimization, we propose a novel algorithmic scheme that converts any GRL problem to a sequence of classic RL problems and solves it efficiently with curvature-dependent approximation guarantees. We also provide hardness of approximation results and empirically demonstrate the effectiveness of our method on several GRL instances.
- Abstract(参考訳): 古典的強化学習(RL)では、エージェントは訪れた状態、例えば値関数の加法目的を最大化する。
残念ながら、このタイプの目的は、実験設計、探索、模倣学習、リスク回避RLなど、多くの現実世界の応用をモデル化することはできない。
これは、加法目的が特定のタスクに不可欠な状態間の相互作用を無視しているためである。
この問題に対処するためにGlobal RL(GRL)を導入する。
グローバルな報酬は、探索において、準モジュラリティ、正の相互作用、eg、超モジュラリティによる相乗効果、そしてそれらの組み合わせによる混合相互作用を通じて、状態間の負の相互作用をキャプチャすることができる。
本稿では,任意のGRL問題を古典的RL問題列に変換し,曲率依存近似保証を用いて効率よく解くアルゴリズムを提案する。
また、近似結果の硬度も提供し、複数のGRLインスタンス上での手法の有効性を実証的に示す。
関連論文リスト
- Operator World Models for Reinforcement Learning [37.69110422996011]
政策ミラーDescentは強化学習(RL)に直接適用されない
本研究では,条件付き平均埋め込みを用いた環境のワールドモデル学習に基づく新しいアプローチを提案する。
次に、RLの演算的定式化を利用して、行列演算による閉形式でこの量で作用値関数を表現する。
論文 参考訳(メタデータ) (2024-06-28T12:05:47Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - REBEL: A Regularization-Based Solution for Reward Overoptimization in Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
報酬関数とユーザの意図、価値観、社会的規範の相違は、現実世界で破滅的なものになる可能性がある。
人間の嗜好から報酬関数を学習することで、このミスアライメント作業を軽減するための現在の方法。
本稿では,ロボットRLHFフレームワークにおける報酬正規化の新たな概念を提案する。
論文 参考訳(メタデータ) (2023-12-22T04:56:37Z) - Federated Natural Policy Gradient Methods for Multi-task Reinforcement
Learning [49.65958529941962]
フェデレート強化学習(RL)は、ローカルデータトラジェクトリを共有することなく、複数の分散エージェントの協調的な意思決定を可能にする。
本研究では,各エージェントがそれぞれのタスクに対応する個別の報酬関数を持つマルチタスク設定について考察する。
我々は、分散された方法で全てのエージェントの割引された全報酬の総和を最大化する、世界的な最適政策を学習する。
論文 参考訳(メタデータ) (2023-11-01T00:15:18Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
我々はtextttMEX というオンライン強化学習(オンラインRL)フレームワークを提案する。
textttMEXは、自動的に探索エクスプロイトのバランスをとりながら、見積もりと計画コンポーネントを統合する。
様々な MuJoCo 環境では,ベースラインを安定的なマージンで上回り,十分な報酬を得られる。
論文 参考訳(メタデータ) (2023-05-29T17:25:26Z) - Leveraging Factored Action Spaces for Efficient Offline Reinforcement
Learning in Healthcare [38.42691031505782]
本稿では, 因子化作用空間によって誘導される線形Q-関数分解の形式を提案する。
我々の手法は、状態-作用空間の未探索領域内でエージェントがより正確な推論を行うのに役立つ。
論文 参考訳(メタデータ) (2023-05-02T19:13:10Z) - Cross-Trajectory Representation Learning for Zero-Shot Generalization in
RL [21.550201956884532]
高次元の観察空間上のいくつかのタスクで学んだポリシーを、トレーニング中に見えない同様のタスクに一般化する。
この課題に対する多くの有望なアプローチは、RLを2つの関数を同時に訓練するプロセスと見なしている。
本稿では,RLエージェント内で動作するクロストラジェクトリ表現学習(CTRL, Cross-Trajectory Representation Learning)を提案する。
論文 参考訳(メタデータ) (2021-06-04T00:43:10Z) - FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning via Distance
Metric Learning and Behavior Regularization [10.243908145832394]
本稿では, オフラインメタ強化学習(OMRL)問題について検討する。これは, 強化学習(RL)アルゴリズムが未知のタスクに迅速に適応できるようにするパラダイムである。
この問題はまだ完全には理解されていないが、2つの大きな課題に対処する必要がある。
我々は、いくつかの単純な設計選択が、最近のアプローチよりも大幅に改善できることを示す分析と洞察を提供する。
論文 参考訳(メタデータ) (2020-10-02T17:13:39Z) - Active Finite Reward Automaton Inference and Reinforcement Learning
Using Queries and Counterexamples [31.31937554018045]
深部強化学習(RL)法は, 良好な性能を達成するために, 環境探索からの集中的なデータを必要とする。
本稿では,RLエージェントが探索過程を推論し,その将来的な探索を効果的に導くための高レベルの知識を蒸留するフレームワークを提案する。
具体的には、L*学習アルゴリズムを用いて、有限報酬オートマトンという形で高レベルの知識を学習する新しいRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-28T21:13:08Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
本稿では,複雑な視覚環境において,エージェントが低品質な実演を行えるようにするためのアプローチの組み合わせを提案する。
提案した目標指向のリプレイバッファ構築により,エージェントはデモにおいて複雑な階層的タスクを解くためのサブゴールを自動的に強調することができる。
私たちのアルゴリズムに基づくこのソリューションは、有名なMineRLコンペティションのすべてのソリューションを破り、エージェントがMinecraft環境でダイヤモンドをマイニングすることを可能にする。
論文 参考訳(メタデータ) (2020-06-17T15:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。