Metric Learning for Clifford Group Equivariant Neural Networks
- URL: http://arxiv.org/abs/2407.09926v1
- Date: Sat, 13 Jul 2024 15:41:14 GMT
- Title: Metric Learning for Clifford Group Equivariant Neural Networks
- Authors: Riccardo Ali, Paulina Kulytė, Haitz Sáez de Ocáriz Borde, Pietro Liò,
- Abstract summary: Clifford Group Equivariant Neural Networks (CGENNs) leverage Clifford algebras and multivectors to ensure symmetry constraints in neural representations.
Previous works have restricted internal network representations to Euclidean or Minkowski (pseudo-)metrics, handpicked depending on the problem at hand.
We propose an alternative method that enables the metric to be learned in a data-driven fashion, allowing the CGENN network to learn more flexible representations.
- Score: 15.551447911164903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clifford Group Equivariant Neural Networks (CGENNs) leverage Clifford algebras and multivectors as an alternative approach to incorporating group equivariance to ensure symmetry constraints in neural representations. In principle, this formulation generalizes to orthogonal groups and preserves equivariance regardless of the metric signature. However, previous works have restricted internal network representations to Euclidean or Minkowski (pseudo-)metrics, handpicked depending on the problem at hand. In this work, we propose an alternative method that enables the metric to be learned in a data-driven fashion, allowing the CGENN network to learn more flexible representations. Specifically, we populate metric matrices fully, ensuring they are symmetric by construction, and leverage eigenvalue decomposition to integrate this additional learnable component into the original CGENN formulation in a principled manner. Additionally, we motivate our method using insights from category theory, which enables us to explain Clifford algebras as a categorical construction and guarantee the mathematical soundness of our approach. We validate our method in various tasks and showcase the advantages of learning more flexible latent metric representations. The code and data are available at https://github.com/rick-ali/Metric-Learning-for-CGENNs
Related papers
- Symmetry Discovery for Different Data Types [52.2614860099811]
Equivariant neural networks incorporate symmetries into their architecture, achieving higher generalization performance.
We propose LieSD, a method for discovering symmetries via trained neural networks which approximate the input-output mappings of the tasks.
We validate the performance of LieSD on tasks with symmetries such as the two-body problem, the moment of inertia matrix prediction, and top quark tagging.
arXiv Detail & Related papers (2024-10-13T13:39:39Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - A Unified Framework to Enforce, Discover, and Promote Symmetry in Machine Learning [5.1105250336911405]
We provide a unifying theoretical and methodological framework for incorporating symmetry into machine learning models.
We show that enforcing and discovering symmetry are linear-algebraic tasks that are dual with respect to the bilinear structure of the Lie derivative.
We propose a novel way to promote symmetry by introducing a class of convex regularization functions based on the Lie derivative and nuclear norm relaxation.
arXiv Detail & Related papers (2023-11-01T01:19:54Z) - Machine Learning Clifford invariants of ADE Coxeter elements [2.0269884338680866]
We perform exhaustive calculations of all Coxeter transformations for $A_8$, $D_8$ and $E_8$ for a choice of basis of simple roots.
This computational algebra paradigm generates a dataset that can then be mined using techniques from data science.
This paper is a pump-priming study in experimental mathematics using Clifford algebras.
arXiv Detail & Related papers (2023-09-29T18:00:01Z) - Geometric Clifford Algebra Networks [53.456211342585824]
We propose Geometric Clifford Algebra Networks (GCANs) for modeling dynamical systems.
GCANs are based on symmetry group transformations using geometric (Clifford) algebras.
arXiv Detail & Related papers (2023-02-13T18:48:33Z) - Generative Adversarial Symmetry Discovery [19.098785309131458]
LieGAN represents symmetry as interpretable Lie algebra basis and can discover various symmetries.
The learned symmetry can also be readily used in several existing equivariant neural networks to improve accuracy and generalization in prediction.
arXiv Detail & Related papers (2023-02-01T04:28:36Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
We show that learning a small neural network to perform canonicalization is better than using predefineds.
Our experiments show that learning the canonicalization function is competitive with existing techniques for learning equivariant functions across many tasks.
arXiv Detail & Related papers (2022-11-11T21:58:15Z) - MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning [90.20563679417567]
This paper introduces MDP homomorphic networks for deep reinforcement learning.
MDP homomorphic networks are neural networks that are equivariant under symmetries in the joint state-action space of an MDP.
We show that such networks converge faster than unstructured networks on CartPole, a grid world and Pong.
arXiv Detail & Related papers (2020-06-30T15:38:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.