論文の概要: Artificial intelligence and machine learning applications for cultured meat
- arxiv url: http://arxiv.org/abs/2407.09982v1
- Date: Tue, 30 Apr 2024 13:35:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 12:59:07.459484
- Title: Artificial intelligence and machine learning applications for cultured meat
- Title(参考訳): 培養肉の人工知能と機械学習応用
- Authors: Michael E. Todhunter, Sheikh Jubair, Ruchika Verma, Rikard Saqe, Kevin Shen, Breanna Duffy,
- Abstract要約: 養殖肉は、環境、倫理、健康への影響を減らした補完的な肉産業を提供する可能性がある。
しかし、時間と資源集約的な研究と開発を必要とする大きな技術的課題が残っている。
機械学習は、実験を合理化し、最適な結果を予測し、実験時間と資源を減らすことによって、培養肉技術を促進する可能性がある。
- 参考スコア(独自算出の注目度): 0.5455266693561108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cultured meat has the potential to provide a complementary meat industry with reduced environmental, ethical, and health impacts. However, major technological challenges remain which require time- and resource-intensive research and development efforts. Machine learning has the potential to accelerate cultured meat technology by streamlining experiments, predicting optimal results, and reducing experimentation time and resources. However, the use of machine learning in cultured meat is in its infancy. This review covers the work available to date on the use of machine learning in cultured meat and explores future possibilities. We address four major areas of cultured meat research and development: establishing cell lines, cell culture media design, microscopy and image analysis, and bioprocessing and food processing optimization. This review aims to provide the foundation necessary for both cultured meat and machine learning scientists to identify research opportunities at the intersection between cultured meat and machine learning.
- Abstract(参考訳): 養殖肉は、環境、倫理、健康への影響を減らした補完的な肉産業を提供する可能性がある。
しかし、時間と資源集約的な研究と開発を必要とする大きな技術的課題が残っている。
機械学習は、実験を合理化し、最適な結果を予測し、実験時間と資源を減らすことによって、培養肉技術を促進する可能性がある。
しかし、培養肉における機械学習の利用は、その初期段階にある。
このレビューでは、培養肉における機械学習の使用について現在利用可能な作業について取り上げ、今後の可能性を探る。
培養肉の研究と開発において,細胞株の確立,細胞培養メディアのデザイン,顕微鏡と画像解析,バイオプロセッシングと食品加工の最適化の4つの主要な領域に対処する。
本総説は, 培養肉と機械学習の両研究者が, 培養肉と機械学習の交点における研究機会を特定するために必要な基盤を提供することを目的とする。
関連論文リスト
- FoodPuzzle: Developing Large Language Model Agents as Flavor Scientists [51.97629078968826]
本稿では,フレーバープロファイルの抽出と理解のための仮説の創出として概念化されたフレーバーサイエンスにおける科学エージェントのための新しい問題領域を提案する。
そこで本研究では,テキスト内学習と検索技術を統合したScientific Agentアプローチを提案する。
実験結果から,フレーバープロファイル予測タスクにおいて,本モデルが従来の手法をはるかに上回っていることが示唆された。
論文 参考訳(メタデータ) (2024-09-19T15:07:35Z) - Computer Vision in the Food Industry: Accurate, Real-time, and Automatic Food Recognition with Pretrained MobileNetV2 [1.6590638305972631]
本研究は,16643画像からなる公共食品11データセット上での食品認識において,効率的かつ高速な事前訓練されたMobileNetV2モデルを用いる。
また、データセット理解、転送学習、データ拡張、正規化、動的学習率、ハイパーパラメータチューニング、さまざまなサイズの画像の考慮など、さまざまな技術を活用して、パフォーマンスと堅牢性を高めている。
より単純な構造を持ち、深層学習領域の深部・密度モデルと比較して訓練可能なパラメータが少ない光モデルを採用するが、短時間で計算可能な精度を達成した。
論文 参考訳(メタデータ) (2024-05-19T17:20:20Z) - Data-Centric Digital Agriculture: A Perspective [23.566985362242498]
デジタル農業は、食料、食料、繊維、燃料の需要の増加に対応するために急速に発展している。
デジタル農業における機械学習の研究は、主にモデル中心のアプローチに焦点を当てている。
デジタル農業の可能性を完全に実現するためには、この分野におけるデータの役割を包括的に理解することが不可欠である。
論文 参考訳(メタデータ) (2023-12-06T11:38:26Z) - Machine Culture [15.122174007266874]
知的機械は、変化、伝達、選択の文化的過程を同時に変革する、と我々は主張する。
我々は、機械が文化的進化に与える影響を現在および将来予測するための概念的枠組みを提供する。
論文 参考訳(メタデータ) (2023-11-19T18:12:21Z) - NutritionVerse: Empirical Study of Various Dietary Intake Estimation Approaches [59.38343165508926]
食事の正確な摂取推定は、健康的な食事を支援するための政策やプログラムを伝える上で重要である。
最近の研究は、コンピュータービジョンと機械学習を使用して、食物画像から食事摂取を自動的に推定することに焦点を当てている。
我々は,84,984個の合成2D食品画像と関連する食事情報を用いた最初の大規模データセットであるNutritionVerse-Synthを紹介した。
また、リアルなイメージデータセットであるNutritionVerse-Realを収集し、リアル性を評価するために、251の料理の889のイメージを含む。
論文 参考訳(メタデータ) (2023-09-14T13:29:41Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
我々は、AI技術がアグリフードシステムをどう変え、現代のアグリフード産業に貢献するかをレビューする。
本稿では,農業,畜産,漁業において,アグリフードシステムにおけるAI手法の進歩について概説する。
我々は、AIで現代のアグリフードシステムを変革するための潜在的な課題と有望な研究機会を強調します。
論文 参考訳(メタデータ) (2023-05-03T05:16:54Z) - Machine learning can guide experimental approaches for protein
digestibility estimations [1.447032077887874]
本稿では,食品の本当の回腸消化率を予測するための機械学習手法を提案する。
食品タンパク質の消化率を予測する最初のAIベースのモデルは、既存のモデルと比較して90%の精度を持つ。
論文 参考訳(メタデータ) (2022-11-01T17:43:58Z) - Seeing biodiversity: perspectives in machine learning for wildlife
conservation [49.15793025634011]
機械学習は、野生生物種の理解、モニタリング能力、保存性を高めるために、この分析的な課題を満たすことができると我々は主張する。
本質的に、新しい機械学習アプローチとエコロジー分野の知識を組み合わせることで、動物生態学者は現代のセンサー技術が生み出すデータの豊富さを生かすことができる。
論文 参考訳(メタデータ) (2021-10-25T13:40:36Z) - Vision-Based Food Analysis for Automatic Dietary Assessment [49.32348549508578]
本総説では, 食品画像分析, 容積推定, 栄養素抽出の3段階からなる, 統合型ビジョンベース食事評価(VBDA)の枠組みを概説する。
深層学習により、VBDAは徐々にエンドツーエンドの実装へと移行し、単一のネットワークに食品画像を適用して栄養を直接見積もる。
論文 参考訳(メタデータ) (2021-08-06T05:46:01Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
機械学習は、データのパターンを認識し、予測モデリングに使用するアルゴリズムの開発と応用に関係している。
ディープラーニングは、独自の機械学習のサブフィールドになっている。
生物学的研究の文脈において、ディープラーニングは高次元の生物学的データから新しい洞察を導き出すためにますます使われてきた。
論文 参考訳(メタデータ) (2021-05-29T21:02:44Z) - Deep Learning and Machine Vision for Food Processing: A Survey [5.53479503648814]
食品の品質と安全性は、人間の健康、社会の発展、安定性の基礎であるため、社会全体にとって重要な問題です。
機械ビジョンの開発は、研究者や産業が食品加工の効率を向上させるのに大いに役立つ。
本稿では,従来の機械学習と深層学習の手法の概要と,食品加工分野に適用可能な機械ビジョン技術について概説する。
論文 参考訳(メタデータ) (2021-03-30T06:40:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。