論文の概要: A Training Data Recipe to Accelerate A* Search with Language Models
- arxiv url: http://arxiv.org/abs/2407.09985v2
- Date: Wed, 23 Oct 2024 22:37:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 21:43:45.230984
- Title: A Training Data Recipe to Accelerate A* Search with Language Models
- Title(参考訳): 言語モデルを用いたA*探索の高速化のためのトレーニングデータ
- Authors: Devaansh Gupta, Boyang Li,
- Abstract要約: A*のような検索アルゴリズムを備えた大規模言語モデル(LLM)は、拡張された推論とスケーラブルな推論の約束を持っている。
我々は,A*探索アルゴリズムの要件を LLM の要件から実験的に切り離して,この課題を一般化する。
提案手法は,解を見つけるのに要する反復回数を最大15倍に削減し,壁面通過速度を最大5倍に向上させる。
- 参考スコア(独自算出の注目度): 3.037409201025504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Combining Large Language Models (LLMs) with heuristic search algorithms like A* holds the promise of enhanced LLM reasoning and scalable inference. To accelerate training and reduce computational demands, we investigate the coreset selection problem for the training data of LLM heuristic learning. Few methods to learn the heuristic functions consider the interaction between the search algorithm and the machine learning model. In this work, we empirically disentangle the requirements of A* search algorithm from the requirements of the LLM to generalise on this task. Surprisingly, we find an overlap between their requirements; A* requires more accurate predictions on search nodes near the goal, and LLMs need the same set of nodes for effective generalisation. With these insights, we derive a data-selection distribution for learning LLM-based heuristics. On three classical planning domains, maze navigation, Sokoban and sliding tile puzzles, our technique reduces the number of iterations required to find the solutions by up to 15x, with a wall-clock speed-up of search up to 5x. The codebase is at https://github.com/devaansh100/a_star.
- Abstract(参考訳): 大規模言語モデル(LLM)とA*のようなヒューリスティック検索アルゴリズムを組み合わせることで、LLM推論の強化とスケーラブルな推論が期待できる。
LLMヒューリスティック学習のトレーニングデータのコアセット選択問題について検討する。
ヒューリスティック関数を学習する手法はほとんどなく,探索アルゴリズムと機械学習モデルとの相互作用を考察する。
本研究では, A* 探索アルゴリズムの要件を LLM の要件から実証的に切り離して, この課題を一般化する。
A* は目標に近い探索ノードに対してより正確な予測を必要とし、LLM は効率的な一般化のために同じノードセットを必要とする。
これらの知見により,LLMに基づくヒューリスティックス学習のためのデータ選択分布を導出する。
迷路ナビゲーション,ソコバン,スライディングタイルパズルの3つの古典的計画領域において,我々の手法は,解を見つけるのに必要な反復回数を最大15倍に減らし,探索時間を最大5倍に短縮する。
コードベースはhttps://github.com/devaansh100/a_starにある。
関連論文リスト
- Uncertainty-Guided Optimization on Large Language Model Search Trees [42.71167208999792]
大規模言語モデル(LLM)の復号過程における最大可能性列の探索においては,greedy や beam search などの木探索アルゴリズムが標準となっている。
LLMの遷移確率に関する事前の信念を定義し、各反復において最も有望な経路についての後続の信念を得る。
モンテカルロ木探索のような高価なシミュレーションに基づく非光学的手法とは異なり、我々の手法は信念からのサンプルのみを必要とする。
論文 参考訳(メタデータ) (2024-07-04T14:08:50Z) - LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
本研究では,動的ノード選択とノードレベルの探索予算を備えた新しいガイド付き木探索アルゴリズムを提案する。
GSM8KおよびTabMWPデータセットを用いて行った実験により,本手法はベースライン法に比べて計算コストが大幅に低いことを示した。
論文 参考訳(メタデータ) (2024-06-29T05:14:04Z) - Thought of Search: Planning with Language Models Through The Lens of Efficiency [22.47015814897628]
我々は近年の傾向が非効率性のために健全性と完全性の両方を放棄していると論じる。
本研究では,LLMを用いて検索コンポーネントのコードを生成することにより,全データセットを100%精度で解けることを示す。
論文 参考訳(メタデータ) (2024-04-18T01:27:29Z) - Cache & Distil: Optimising API Calls to Large Language Models [82.32065572907125]
ジェネレーティブAIツールの大規模デプロイは、ユーザクエリをフルフィルするために、LLM(Large Language Model)に対する高価なAPI呼び出しに依存することが多い。
これらの呼び出しの頻度を縮めるために、より小さな言語モデル(学生)を用いることができる。
この学生は、ユーザー要求の増加に独立して対処する能力が徐々に向上する。
論文 参考訳(メタデータ) (2023-10-20T15:01:55Z) - Autonomous Tree-search Ability of Large Language Models [58.68735916408101]
大規模言語モデルは、高度なプロンプト技術で顕著な推論能力に優れています。
近年の研究では、LLMがより困難な推論タスクを解くために受動的木探索を行えるように、検索ロジックを定義するために外部プログラムを活用することが提案されている。
我々は,LLMの自律木探索能力という新しい概念を提案し,正しい解を求める探索軌跡を含む応答を自動生成する。
論文 参考訳(メタデータ) (2023-10-14T14:14:38Z) - Alphazero-like Tree-Search can Guide Large Language Model Decoding and
Training [37.79247073276239]
ToT(Tree-of-Thought)やRAP(Reasoning via Planning)といった最近の研究は、LLMの推論能力を強化することを目的としている。
LLMのためのAlphaZeroライクな木探索学習フレームワーク(TS-LLM)を提案する。
学習価値関数を用いた木探索がLLM復号を導出する方法を示す。
論文 参考訳(メタデータ) (2023-09-29T12:20:19Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
大規模言語モデル(LLM)は、最近、テキストを介してコンテキスト対応の応答を提供するという、印象的な能力を実証した。
この能力は、パターン補完に関連するシーケンシャルな意思決定タスクにおいて、妥当なソリューションを予測するために使われる可能性がある。
第一強化学習(RL)エージェントによって部分的に完了したタスクに対する解を提案するために,LLMのこの予測能力を利用するLaGRを紹介した。
論文 参考訳(メタデータ) (2023-08-21T02:07:35Z) - Algorithm of Thoughts: Enhancing Exploration of Ideas in Large Language Models [17.059322033670124]
本稿では,アルゴリズム的推論経路を通じて大規模言語モデルを促進する新しい手法を提案する。
この結果から,LLMをアルゴリズムを用いて指導すると,アルゴリズム自体よりも性能が向上する可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-20T22:36:23Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
我々はエンコーダとデコーダベースのモデルを単一のプレフィックスLMに統一する。
学習方法は,「フリーランチ」仮説の主張を考察する。
データ配信においては,混合分布と多言語学習がモデル性能に及ぼす影響について検討した。
論文 参考訳(メタデータ) (2023-05-03T17:55:25Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。