論文の概要: Mitigating shortage of labeled data using clustering-based active
learning with diversity exploration
- arxiv url: http://arxiv.org/abs/2207.02964v1
- Date: Wed, 6 Jul 2022 20:53:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-08 12:48:51.895376
- Title: Mitigating shortage of labeled data using clustering-based active
learning with diversity exploration
- Title(参考訳): 多様性探索を用いたクラスタリングに基づくアクティブラーニングによるラベルデータの不足軽減
- Authors: Xuyang Yan, Shabnam Nazmi, Biniam Gebru, Mohd Anwar, Abdollah
Homaifar, Mrinmoy Sarkar, and Kishor Datta Gupta
- Abstract要約: 本稿ではクラスタリングに基づくアクティブラーニングフレームワーク,すなわちクラスタリングに基づくサンプリングを用いたアクティブラーニングを提案する。
重なり合うクラスを分類する学習性能を向上させるために、クラスタ境界に基づくサンプルクエリ手順が導入された。
- 参考スコア(独自算出の注目度): 3.312798619476657
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we proposed a new clustering-based active learning framework,
namely Active Learning using a Clustering-based Sampling (ALCS), to address the
shortage of labeled data. ALCS employs a density-based clustering approach to
explore the cluster structure from the data without requiring exhaustive
parameter tuning. A bi-cluster boundary-based sample query procedure is
introduced to improve the learning performance for classifying highly
overlapped classes. Additionally, we developed an effective diversity
exploration strategy to address the redundancy among queried samples. Our
experimental results justified the efficacy of the ALCS approach.
- Abstract(参考訳): 本稿では、クラスタリングに基づくアクティブラーニングフレームワーク、すなわち、クラスタリングベースのサンプリング(ALCS)を用いたアクティブラーニングを提案し、ラベル付きデータの不足に対処する。
ALCSはデータからクラスタ構造を探索するために密度に基づくクラスタリング手法を採用している。
重なり合うクラスを分類する学習性能を向上させるために、クラスタ境界に基づくサンプルクエリ手順が導入された。
さらに,クエリーサンプル間の冗長性に対処する効果的な多様性探索手法を開発した。
実験結果は,alcsアプローチの有効性を正当化した。
関連論文リスト
- Adaptive Self-supervised Robust Clustering for Unstructured Data with Unknown Cluster Number [12.926206811876174]
適応型自己教師型ロバストクラスタリング(Adaptive Self-supervised Robust Clustering, ASRC)と呼ばれる非構造化データに適した,新たな自己教師型ディープクラスタリング手法を提案する。
ASRCはグラフ構造とエッジ重みを適応的に学習し、局所構造情報と大域構造情報の両方をキャプチャする。
ASRCは、クラスタ数の事前知識に依存するメソッドよりも優れており、非構造化データのクラスタリングの課題に対処する上での有効性を強調している。
論文 参考訳(メタデータ) (2024-07-29T15:51:09Z) - A3S: A General Active Clustering Method with Pairwise Constraints [66.74627463101837]
A3Sは、適応クラスタリングアルゴリズムによって得られる初期クラスタ結果に対して、戦略的にアクティブクラスタリングを調整する。
さまざまな実世界のデータセットにわたる広範な実験において、A3Sは、人間のクエリを著しく少なくして、望ましい結果を達成する。
論文 参考訳(メタデータ) (2024-07-14T13:37:03Z) - GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - Spectral Clustering in Convex and Constrained Settings [0.0]
半定スペクトルクラスタリングにペアワイズ制約をシームレスに統合する新しいフレームワークを提案する。
本手法は,半定スペクトルクラスタリングによって複雑なデータ構造を捕捉する能力を体系的に拡張する。
論文 参考訳(メタデータ) (2024-04-03T18:50:14Z) - Deep Embedding Clustering Driven by Sample Stability [16.53706617383543]
サンプル安定性(DECS)により駆動されるディープ埋め込みクラスタリングアルゴリズムを提案する。
具体的には、まずオートエンコーダで初期特徴空間を構築し、次にサンプル安定性に制約されたクラスタ指向の埋め込み機能を学ぶ。
5つのデータセットに対する実験結果から,提案手法は最先端のクラスタリング手法と比較して優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-01-29T09:19:49Z) - Dynamic Clustering and Cluster Contrastive Learning for Unsupervised
Person Re-identification [29.167783500369442]
教師なしRe-ID手法は、ラベルのないデータから堅牢で差別的な特徴を学習することを目的としている。
本稿では,動的クラスタリングとクラスタコントラスト学習(DCCC)手法を提案する。
提案したDCCCの有効性を検証するために, 広く利用されている複数の公開データセットの実験を行った。
論文 参考訳(メタデータ) (2023-03-13T01:56:53Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z) - Clustering Optimisation Method for Highly Connected Biological Data [0.0]
接続クラスタリング評価のための単純な指標が,生物データの最適セグメンテーションにつながることを示す。
この作業の斬新さは、混雑したデータをクラスタリングするための単純な最適化方法の作成にある。
論文 参考訳(メタデータ) (2022-08-08T17:33:32Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Progressive Cluster Purification for Unsupervised Feature Learning [48.87365358296371]
教師なしの特徴学習では、サンプル特異性に基づく手法はクラス間の情報を無視する。
本稿では,プログレッシブクラスタ形成時にクラス不整合サンプルを除外するクラスタリングに基づく新しい手法を提案する。
我々の手法は、プログレッシブ・クラスタ・パーフィケーション(PCP)と呼ばれ、訓練中に徐々にクラスタ数を減らし、プログレッシブ・クラスタリングを実装している。
論文 参考訳(メタデータ) (2020-07-06T08:11:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。