論文の概要: PAFUSE: Part-based Diffusion for 3D Whole-Body Pose Estimation
- arxiv url: http://arxiv.org/abs/2407.10220v1
- Date: Sun, 14 Jul 2024 14:24:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 18:59:20.330680
- Title: PAFUSE: Part-based Diffusion for 3D Whole-Body Pose Estimation
- Title(参考訳): PAFUSE:3次元全身電位推定のための部分拡散
- Authors: Nermin Samet, Cédric Rommel, David Picard, Eduardo Valle,
- Abstract要約: 本研究では,3次元全体のポーズ推定に新たなアプローチを導入し,身体部分間のスケールと変形性-分散の課題に対処する。
不均一なサンプルデータにおける動きの活用という課題に対処するだけでなく、安定な拡散と階層的な部分表現を結合する。
H3WBデータセットでは,時間情報の活用に失敗した技術の現状を大幅に上回っている。
- 参考スコア(独自算出の注目度): 20.38424513438315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel approach for 3D whole-body pose estimation, addressing the challenge of scale- and deformability- variance across body parts brought by the challenge of extending the 17 major joints on the human body to fine-grained keypoints on the face and hands. In addition to addressing the challenge of exploiting motion in unevenly sampled data, we combine stable diffusion to a hierarchical part representation which predicts the relative locations of fine-grained keypoints within each part (e.g., face) with respect to the part's local reference frame. On the H3WB dataset, our method greatly outperforms the current state of the art, which fails to exploit the temporal information. We also show considerable improvements compared to other spatiotemporal 3D human-pose estimation approaches that fail to account for the body part specificities. Code is available at https://github.com/valeoai/PAFUSE.
- Abstract(参考訳): 身体の17大関節を顔と手の細かいキーポイントまで伸ばすという課題から, 体部位のスケール・変形性・変形性の課題に対処する, 3次元全体のポーズ推定のための新しいアプローチを提案する。
不均一なサンプルデータにおける動きの活用という課題に対処することに加えて、各部分(例えば顔)内の細粒度キーポイントの相対的な位置を、各部分の局所的な参照フレームに対して予測する階層的な部分表現に安定な拡散を組み合わす。
H3WBデータセットでは,時間情報の活用に失敗する現在の最先端の手法よりもはるかに優れています。
また, 身体部位の特異性を考慮しない他の時空間的3次元人体推定手法と比較して, かなりの改善が見られた。
コードはhttps://github.com/valeoai/PAFUSEで入手できる。
関連論文リスト
- Enhancing 3D Human Pose Estimation Amidst Severe Occlusion with Dual Transformer Fusion [13.938406073551844]
本稿では,DTF(Dual Transformer Fusion)アルゴリズムを提案する。
正確な3Dヒューマンポース推定を実現するために,本手法では,まず2つの中間ビューを生成する革新的なDTFアーキテクチャを利用する。
このアプローチは、両方のデータセットで既存の最先端メソッドよりも優れており、大幅に改善されています。
論文 参考訳(メタデータ) (2024-10-06T18:15:27Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3Dは多視点人間のポーズ推定のための新しいアプローチである。
直接的な3Dアノテーションを必要とせずに、堅牢性と柔軟性を向上させる。
論文 参考訳(メタデータ) (2024-04-23T00:18:00Z) - HandDiff: 3D Hand Pose Estimation with Diffusion on Image-Point Cloud [60.47544798202017]
ハンドポーズ推定は、様々な人間とコンピュータの相互作用アプリケーションにおいて重要なタスクである。
本論文は,手形画像点雲上での正確な手ポーズを反復的に認知する拡散型手ポーズ推定モデルであるHandDiffを提案する。
実験の結果,提案したHandDiffは,4つの挑戦的なハンドポーズベンチマークデータセットにおいて,既存のアプローチよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-04-04T02:15:16Z) - Probabilistic Human Mesh Recovery in 3D Scenes from Egocentric Views [32.940614931864154]
身体のポーズ分布をモデル化するシーン条件拡散法を提案する。
この方法は、可塑性ヒトとシーンの相互作用において体を生成する。
目に見える関節の精度と、目に見えない身体の部分の多様性に優れる。
論文 参考訳(メタデータ) (2023-04-12T17:58:57Z) - KTN: Knowledge Transfer Network for Learning Multi-person 2D-3D
Correspondences [77.56222946832237]
画像中の複数の人物の密着度を検出するための新しい枠組みを提案する。
提案手法は知識伝達ネットワーク(KTN)の2つの問題に対処する。
特徴解像度を同時に維持し、背景画素を抑圧し、この戦略は精度を大幅に向上させる。
論文 参考訳(メタデータ) (2022-06-21T03:11:37Z) - KAMA: 3D Keypoint Aware Body Mesh Articulation [79.04090630502782]
本稿では,パラメトリックなボディーモデルSMPLを簡単な幾何学的変換によって記述する解析解を提案する。
今回のアプローチは,最先端のアプローチと比較して,画像コンテンツのアライメントが大幅に向上する。
挑戦的な3DPWおよびHuman3.6Mの結果は私達のアプローチが最先端のボディ網付属品をもたらすことを示します。
論文 参考訳(メタデータ) (2021-04-27T23:01:03Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
ラベルのないビデオフレームからバリエーションを分離する自己教師付き学習フレームワークを提案する。
3Dポーズと空間部分マップの表現ギャップを埋める、微分可能な形式化により、多様なカメラの動きを持つビデオで操作できる。
論文 参考訳(メタデータ) (2020-04-09T07:55:01Z) - Learning 3D Human Shape and Pose from Dense Body Parts [117.46290013548533]
本研究では,3次元の人体形状を学習し,身体部分の密接な対応からポーズをとるために,分解・集約ネットワーク(DaNet)を提案する。
ローカルストリームからのメッセージは集約され、回転ベースのポーズの堅牢な予測が強化される。
提案手法は,Human3.6M,UP3D,COCO,3DPWを含む屋内および実世界のデータセットで検証される。
論文 参考訳(メタデータ) (2019-12-31T15:09:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。