Practical Unlearning for Large Language Models
- URL: http://arxiv.org/abs/2407.10223v1
- Date: Sun, 14 Jul 2024 14:26:17 GMT
- Title: Practical Unlearning for Large Language Models
- Authors: Chongyang Gao, Lixu Wang, Chenkai Weng, Xiao Wang, Qi Zhu,
- Abstract summary: Machine unlearning (MU) has emerged as a promising solution to address these issues.
MU typically assumes full access to the original training data to preserve utility.
Existing LLM unlearning methods often assume access to data most affected by undesired data unlearning.
We propose the O3 framework to overcome these challenges and achieve practical LLM unlearning.
- Score: 23.515444452866404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While LLMs have demonstrated impressive performance across various domains and tasks, their security issues have become increasingly severe. Machine unlearning (MU) has emerged as a promising solution to address these issues by removing the influence of undesired data on the target model without compromising its utility in other aspects. MU typically assumes full access to the original training data to preserve utility, which is difficult to achieve in LLM unlearning. Existing LLM unlearning methods often assume access to data most affected by undesired data unlearning. However, this assumption underestimates the entanglement among various LLM capabilities and ignores data access limitations due to various issues. Moreover, these LLM unlearning methods do not sufficiently consider that unlearning requests in real-world scenarios are continuously emerging. To overcome these challenges and achieve practical LLM unlearning, we propose the O3 framework. The O3 framework includes an Out-Of-Distribution (OOD) detector to measure the similarity between input and unlearning data, and an Orthogonal low-rank adapter (LoRA) for continuously unlearning requested data. The OOD detector is trained with a novel contrastive entropy loss and utilizes a local-global layer-aggregated scoring mechanism. The orthogonal LoRA achieves parameter disentanglement among continual unlearning requests. During inference, our O3 framework can smartly decide whether and to what extent to load the unlearning LoRA based on the OOD detector's predictions. Notably, O3's effectiveness does not rely on any retained data. We conducted extensive experiments on O3 and state-of-the-art LLM unlearning methods across three tasks and seven datasets. The results indicate that O3 consistently achieves the best trade-off between unlearning effectiveness and utility preservation, especially when facing continuous unlearning requests.
Related papers
- Towards Robust Evaluation of Unlearning in LLMs via Data Transformations [17.927224387698903]
Large Language Models (LLMs) have shown to be a great success in a wide range of applications ranging from regular NLP-based use cases to AI agents.
In recent times research in the area of Machine Unlearning (MUL) has become active.
Main idea is to force LLMs to forget (unlearn) certain information (e.g., PII) without suffering from performance loss on regular tasks.
arXiv Detail & Related papers (2024-11-23T07:20:36Z) - Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
Large Language Models (LLMs) are increasingly recognized for their practical applications.
Retrieval-Augmented Generation (RAG) tackles this challenge and has shown a significant impact on LLMs.
By minimizing retrieval requests that yield neutral or harmful results, we can effectively reduce both time and computational costs.
arXiv Detail & Related papers (2024-11-09T15:12:28Z) - A Closer Look at Machine Unlearning for Large Language Models [46.245404272612795]
Large language models (LLMs) may memorize sensitive or copyrighted content, raising privacy and legal concerns.
We discuss several issues in machine unlearning for LLMs and provide our insights on possible approaches.
arXiv Detail & Related papers (2024-10-10T16:56:05Z) - PISTOL: Dataset Compilation Pipeline for Structural Unlearning of LLMs [31.16117964915814]
Machine unlearning, which seeks to erase specific data stored in the pre-trained or fine-tuned models, has emerged as a crucial protective measure for LLMs.
To facilitate the development of structural unlearning methods, we propose PISTOL, a pipeline for compiling multi-scenario datasets.
We conduct benchmarks with four distinct unlearning methods on both Llama2-7B and Mistral-7B models.
arXiv Detail & Related papers (2024-06-24T17:22:36Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
We explore machine unlearning in the domain of large language models (LLMs)
This initiative aims to eliminate undesirable data influence (e.g., sensitive or illegal information) and the associated model capabilities.
arXiv Detail & Related papers (2024-02-13T20:51:58Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
Large language models (LLMs) have achieved significant progress from pre-training on and memorizing a wide range of textual data.
This process might suffer from privacy issues and violations of data protection regulations.
We propose an efficient unlearning framework that could efficiently update LLMs without having to retrain the whole model after data removals.
arXiv Detail & Related papers (2023-10-31T03:35:59Z) - O3D: Offline Data-driven Discovery and Distillation for Sequential
Decision-Making with Large Language Models [16.91329676173649]
Offline Data-driven Discovery and Distillation (O3D) is proposed to improve large language models (LLMs)
O3D automatically discovers reusable skills and distills generalizable knowledge across multiple tasks based on offline interaction data.
Empirical results under two interactive decision-making benchmarks (ALFWorld and WebShop) verify that O3D can notably enhance the decision-making capabilities of LLMs.
arXiv Detail & Related papers (2023-10-22T20:28:33Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
It is commonly assumed in semi-supervised learning (SSL) that the unlabeled data are drawn from the same distribution as that of the labeled ones.
We propose to selectively utilize unlabeled data through sample weighting, so that only conducive unlabeled data would be prioritized.
arXiv Detail & Related papers (2022-05-02T16:09:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.