Towards Lifecycle Unlearning Commitment Management: Measuring Sample-level Unlearning Completeness
- URL: http://arxiv.org/abs/2506.06112v1
- Date: Fri, 06 Jun 2025 14:22:18 GMT
- Title: Towards Lifecycle Unlearning Commitment Management: Measuring Sample-level Unlearning Completeness
- Authors: Cheng-Long Wang, Qi Li, Zihang Xiang, Yinzhi Cao, Di Wang,
- Abstract summary: Interpolated Approximate Measurement (IAM) is a framework designed for unlearning inference.<n>IAM quantifies sample-level unlearning completeness by interpolating the model's generalization-fitting behavior gap on queried samples.<n>We apply IAM to recent approximate unlearning algorithms, revealing general risks of both over-unlearning and under-unlearning.
- Score: 30.596695293390415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Growing concerns over data privacy and security highlight the importance of machine unlearning--removing specific data influences from trained models without full retraining. Techniques like Membership Inference Attacks (MIAs) are widely used to externally assess successful unlearning. However, existing methods face two key limitations: (1) maximizing MIA effectiveness (e.g., via online attacks) requires prohibitive computational resources, often exceeding retraining costs; (2) MIAs, designed for binary inclusion tests, struggle to capture granular changes in approximate unlearning. To address these challenges, we propose the Interpolated Approximate Measurement (IAM), a framework natively designed for unlearning inference. IAM quantifies sample-level unlearning completeness by interpolating the model's generalization-fitting behavior gap on queried samples. IAM achieves strong performance in binary inclusion tests for exact unlearning and high correlation for approximate unlearning--scalable to LLMs using just one pre-trained shadow model. We theoretically analyze how IAM's scoring mechanism maintains performance efficiently. We then apply IAM to recent approximate unlearning algorithms, revealing general risks of both over-unlearning and under-unlearning, underscoring the need for stronger safeguards in approximate unlearning systems. The code is available at https://github.com/Happy2Git/Unlearning_Inference_IAM.
Related papers
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
Influence-based unlearning has emerged as a prominent approach to estimate the impact of individual training samples on model parameters without retraining.<n>This paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning)<n>We introduce the Influence Approximation Unlearning algorithm for efficient machine unlearning from the incremental perspective.
arXiv Detail & Related papers (2025-07-31T05:34:27Z) - PULSE: Practical Evaluation Scenarios for Large Multimodal Model Unlearning [27.16106173526184]
We introduce PULSE protocol for realistic unlearning scenarios for LMMs.<n>We then evaluate existing unlearning methods along these dimensions.<n>Our results reveal that, although some techniques can successfully unlearn knowledge acquired through fine-tuning, they struggle to eliminate information learned during pre-training.
arXiv Detail & Related papers (2025-07-02T01:13:08Z) - OpenUnlearning: Accelerating LLM Unlearning via Unified Benchmarking of Methods and Metrics [101.78963920333342]
We introduce OpenUnlearning, a standardized framework for benchmarking large language models (LLMs) unlearning methods and metrics.<n>OpenUnlearning integrates 9 unlearning algorithms and 16 diverse evaluations across 3 leading benchmarks.<n>We also benchmark diverse unlearning methods and provide a comparative analysis against an extensive evaluation suite.
arXiv Detail & Related papers (2025-06-14T20:16:37Z) - A Closer Look at Machine Unlearning for Large Language Models [46.245404272612795]
Large language models (LLMs) may memorize sensitive or copyrighted content, raising privacy and legal concerns.<n>We discuss several issues in machine unlearning for LLMs and provide our insights on possible approaches.
arXiv Detail & Related papers (2024-10-10T16:56:05Z) - Detecting Training Data of Large Language Models via Expectation Maximization [62.28028046993391]
We introduce EM-MIA, a novel membership inference method that iteratively refines membership scores and prefix scores via an expectation-maximization algorithm.<n> EM-MIA achieves state-of-the-art results on WikiMIA.
arXiv Detail & Related papers (2024-10-10T03:31:16Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
This paper seeks to refine the evaluation of machine unlearning for large language models.<n>It addresses two key challenges -- the robustness of evaluation metrics and the trade-offs between competing goals.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Adversarial Machine Unlearning [26.809123658470693]
This paper focuses on the challenge of machine unlearning, aiming to remove the influence of specific training data on machine learning models.
Traditionally, the development of unlearning algorithms runs parallel with that of membership inference attacks (MIA), a type of privacy threat.
We propose a game-theoretic framework that integrates MIAs into the design of unlearning algorithms.
arXiv Detail & Related papers (2024-06-11T20:07:22Z) - Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails.
We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses.
C-AdvIPO is an adversarial variant of IPO that does not require utility data for adversarially robust alignment.
arXiv Detail & Related papers (2024-05-24T14:20:09Z) - Towards Lifecycle Unlearning Commitment Management: Measuring Sample-level Approximate Unlearning Completeness [30.596695293390415]
We introduce the task of Lifecycle Unlearning Commitment Management (LUCM) for approximate unlearning.
We propose an efficient metric designed to assess the sample-level unlearning completeness.
We show that this metric is able to serve as a tool for monitoring unlearning anomalies throughout the unlearning lifecycle.
arXiv Detail & Related papers (2024-03-19T15:37:27Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process.
Our study introduces a novel model-based perspective: model sparsification via weight pruning.
We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner.
arXiv Detail & Related papers (2023-04-11T02:12:02Z) - Evaluating Machine Unlearning via Epistemic Uncertainty [78.27542864367821]
This work presents an evaluation of Machine Unlearning algorithms based on uncertainty.
This is the first definition of a general evaluation of our best knowledge.
arXiv Detail & Related papers (2022-08-23T09:37:31Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.