論文の概要: Cross-Lingual Multi-Hop Knowledge Editing -- Benchmarks, Analysis and a Simple Contrastive Learning based Approach
- arxiv url: http://arxiv.org/abs/2407.10275v1
- Date: Sun, 14 Jul 2024 17:18:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 18:49:26.841512
- Title: Cross-Lingual Multi-Hop Knowledge Editing -- Benchmarks, Analysis and a Simple Contrastive Learning based Approach
- Title(参考訳): 言語間マルチホップ知識編集 - ベンチマーク, 分析, 単純コントラスト学習に基づくアプローチ
- Authors: Aditi Khandelwal, Harman Singh, Hengrui Gu, Tianlong Chen, Kaixiong Zhou,
- Abstract要約: 言語横断的な設定で様々なSoTA知識編集技術の性能を計測・解析するための多言語多言語知識編集パラダイムを提案する。
具体的には、知識編集能力を測定するために並列言語間ベンチマーク CROLIN-MQUAKE を作成します。
次に,言語間マルチホップ知識編集システムであるCLEVER-CKEを提案する。
- 参考スコア(独自算出の注目度): 53.028586843468915
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large language models are often expected to constantly adapt to new sources of knowledge and knowledge editing techniques aim to efficiently patch the outdated model knowledge, with minimal modification. Most prior works focus on monolingual knowledge editing in English, even though new information can emerge in any language from any part of the world. We propose the Cross-Lingual Multi-Hop Knowledge Editing paradigm, for measuring and analyzing the performance of various SoTA knowledge editing techniques in a cross-lingual setup. Specifically, we create a parallel cross-lingual benchmark, CROLIN-MQUAKE for measuring the knowledge editing capabilities. Our extensive analysis over various knowledge editing techniques uncover significant gaps in performance between the cross-lingual and English-centric setting. Following this, we propose a significantly improved system for cross-lingual multi-hop knowledge editing, CLEVER-CKE. CLEVER-CKE is based on a retrieve, verify and generate knowledge editing framework, where a retriever is formulated to recall edited facts and support an LLM to adhere to knowledge edits. We develop language-aware and hard-negative based contrastive objectives for improving the cross-lingual and fine-grained fact retrieval and verification process used in this framework. Extensive experiments on three LLMs, eight languages, and two datasets show CLEVER-CKE's significant gains of up to 30% over prior methods.
- Abstract(参考訳): 大規模言語モデルは、しばしば新しい知識源に常に適応することが期待され、知識編集技術は、最小限の変更で、時代遅れのモデル知識を効率的にパッチすることを目的としている。
ほとんどの先行研究は、世界のどの地域からでも新しい情報が得られるにもかかわらず、英語での単言語知識の編集に重点を置いている。
言語横断的な構成で様々な知識編集技術の性能を計測・解析するための多言語多言語知識編集パラダイムを提案する。
具体的には、知識編集能力を測定するために並列言語間ベンチマーク CROLIN-MQUAKE を作成します。
様々な知識編集技術に関する広範な分析により、言語横断と英語中心のセッティング間の性能差が明らかとなった。
次に,言語間マルチホップ知識編集システムであるCLEVER-CKEを提案する。
CLEVER-CKEは、検索、検証、および知識編集フレームワークに基づいており、検索者が編集された事実をリコールし、LLMをサポートし、知識編集に準拠する。
本フレームワークでは,言語間および微粒な事実検索および検証プロセスを改善するために,言語認識と強陰性に基づくコントラスト目的の開発を行う。
3つのLLM、8つの言語、2つのデータセットに関する大規模な実験は、CLEVER-CKEが以前の手法よりも最大30%向上したことを示している。
関連論文リスト
- Multilingual Knowledge Editing with Language-Agnostic Factual Neurons [98.73585104789217]
大規模言語モデル(LLM)が多言語事実知識をどのように表すかを検討する。
異なる言語における同じ事実知識は一般的に、言語に依存しない事実ニューロンと呼ばれる共有ニューロンの集合を活性化する。
そこで本研究では,言語非依存のFactual Neurons (LAFN) を探索・修正し,多言語知識を同時に編集する新しいMKE法を提案する。
論文 参考訳(メタデータ) (2024-06-24T08:06:56Z) - MEMLA: Enhancing Multilingual Knowledge Editing with Neuron-Masked Low-Rank Adaptation [18.087144677674786]
我々は多言語知識編集(MKE)に重点を置いており、複数の言語にまたがる更新の伝播が必要である。
12言語からなる新しいデータセットであるMKEB(Multilingual Knowledge Editing Benchmark)を紹介する。
また,ニューロンマスト型低ランク適応(MEMLA)による知識編集を促進する手法を提案する。
論文 参考訳(メタデータ) (2024-06-17T14:03:50Z) - MLaKE: Multilingual Knowledge Editing Benchmark for Large Language Models [65.10456412127405]
MLaKEは5言語にわたる知識編集手法の適応性のベンチマークである。
MLaKEは、ウィキペディアから言語にまたがるファクトチェーンを集約し、フリーフォームとマルチチョイスの両方で質問を生成する。
MLaKEにおける既存手法の多言語知識編集の一般化能力を評価する。
論文 参考訳(メタデータ) (2024-04-07T15:23:28Z) - Retrieval-augmented Multilingual Knowledge Editing [81.6690436581947]
LLM(Large Language Models)で表される知識は、しばしば誤りであり、時間とともに時代遅れになる可能性がある。
知識編集(KE)は、新しい知識を注入するための効果的で経済的な代替手段として発展してきた。
本稿では,LLMの新たな知識を更新するためにRetrieval-augmented Multilingual Knowledge Editor (ReMaKE)を提案する。
論文 参考訳(メタデータ) (2023-12-20T14:08:58Z) - Cross-Lingual Knowledge Editing in Large Language Models [73.12622532088564]
知識編集は、スクラッチから再学習することなく、大きな言語モデルを新しい知識に適応させることが示されている。
ソース言語編集が別のターゲット言語に与える影響は、いまだ不明である。
まず、ZsREを英語から中国語に翻訳することで、大規模な言語間合成データセットを収集する。
論文 参考訳(メタデータ) (2023-09-16T11:07:52Z) - Eva-KELLM: A New Benchmark for Evaluating Knowledge Editing of LLMs [54.22416829200613]
Eva-KELLMは、大規模言語モデルの知識編集を評価するための新しいベンチマークである。
実験結果から, 生文書を用いた知識編集手法は, 良好な結果を得るには有効ではないことが示唆された。
論文 参考訳(メタデータ) (2023-08-19T09:17:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。