Analytic Subspace Routing: How Recursive Least Squares Works in Continual Learning of Large Language Model
- URL: http://arxiv.org/abs/2503.13575v1
- Date: Mon, 17 Mar 2025 13:40:46 GMT
- Title: Analytic Subspace Routing: How Recursive Least Squares Works in Continual Learning of Large Language Model
- Authors: Kai Tong, Kang Pan, Xiao Zhang, Erli Meng, Run He, Yawen Cui, Nuoyan Guo, Huiping Zhuang,
- Abstract summary: Large Language Models (LLMs) possess capabilities that can process diverse language-related tasks.<n>Continual Learning in Large Language Models (LLMs) arises which aims to continually adapt the LLMs to new tasks.<n>This paper proposes Analytic Subspace Routing(ASR) to address these challenges.
- Score: 6.42114585934114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) possess encompassing capabilities that can process diverse language-related tasks. However, finetuning on LLMs will diminish this general skills and continual finetuning will further cause severe degradation on accumulated knowledge. Recently, Continual Learning (CL) in Large Language Models (LLMs) arises which aims to continually adapt the LLMs to new tasks while maintaining previously learned knowledge and inheriting general skills. Existing techniques either leverage previous data to replay, leading to extra computational costs, or utilize a single parameter-efficient module to learn the downstream task, constraining new knowledge absorption with interference between different tasks. Toward these issues, this paper proposes Analytic Subspace Routing(ASR) to address these challenges. For each task, we isolate the learning within a subspace of deep layers' features via low-rank adaptation, eliminating knowledge interference between different tasks. Additionally, we propose an analytic routing mechanism to properly utilize knowledge learned in different subspaces. Our approach employs Recursive Least Squares to train a multi-task router model, allowing the router to dynamically adapt to incoming data without requiring access to historical data. Also, the router effectively assigns the current task to an appropriate subspace and has a non-forgetting property of previously learned tasks with a solid theoretical guarantee. Experimental results demonstrate that our method achieves near-perfect retention of prior knowledge while seamlessly integrating new information, effectively overcoming the core limitations of existing methods. Our code will be released after acceptance.
Related papers
- Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning [79.46570165281084]
We propose a Multi-Stage Knowledge Integration network (MulKI) to emulate the human learning process in distillation methods.
MulKI achieves this through four stages, including Eliciting Ideas, Adding New Ideas, Distinguishing Ideas, and Making Connections.
Our method demonstrates significant improvements in maintaining zero-shot capabilities while supporting continual learning across diverse downstream tasks.
arXiv Detail & Related papers (2024-11-11T07:36:19Z) - Beyond Prompt Learning: Continual Adapter for Efficient Rehearsal-Free Continual Learning [22.13331870720021]
We propose a beyond prompt learning approach to the RFCL task, called Continual Adapter (C-ADA)
C-ADA flexibly extends specific weights in CAL to learn new knowledge for each task and freezes old weights to preserve prior knowledge.
Our approach achieves significantly improved performance and training speed, outperforming the current state-of-the-art (SOTA) method.
arXiv Detail & Related papers (2024-07-14T17:40:40Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - Subspace Distillation for Continual Learning [27.22147868163214]
We propose a knowledge distillation technique that takes into account the manifold structure of a neural network in learning novel tasks.
We demonstrate that the modeling with subspaces provides several intriguing properties, including robustness to noise.
Empirically, we observe that our proposed method outperforms various continual learning methods on several challenging datasets.
arXiv Detail & Related papers (2023-07-31T05:59:09Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Online Continual Learning via the Knowledge Invariant and Spread-out
Properties [4.109784267309124]
Key challenge in continual learning is catastrophic forgetting.
We propose a new method, named Online Continual Learning via the Knowledge Invariant and Spread-out Properties (OCLKISP)
We empirically evaluate our proposed method on four popular benchmarks for continual learning: Split CIFAR 100, Split SVHN, Split CUB200 and Split Tiny-Image-Net.
arXiv Detail & Related papers (2023-02-02T04:03:38Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered.
Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal.
We propose to only activate and select sparse neurons for learning current and past tasks at any stage.
arXiv Detail & Related papers (2022-02-21T13:25:03Z) - Fully Online Meta-Learning Without Task Boundaries [80.09124768759564]
We study how meta-learning can be applied to tackle online problems of this nature.
We propose a Fully Online Meta-Learning (FOML) algorithm, which does not require any ground truth knowledge about the task boundaries.
Our experiments show that FOML was able to learn new tasks faster than the state-of-the-art online learning methods.
arXiv Detail & Related papers (2022-02-01T07:51:24Z) - Continual Learning in Low-rank Orthogonal Subspaces [86.36417214618575]
In continual learning (CL), a learner is faced with a sequence of tasks, arriving one after the other, and the goal is to remember all the tasks once the learning experience is finished.
The prior art in CL uses episodic memory, parameter regularization or network structures to reduce interference among tasks, but in the end, all the approaches learn different tasks in a joint vector space.
We propose to learn tasks in different (low-rank) vector subspaces that are kept orthogonal to each other in order to minimize interference.
arXiv Detail & Related papers (2020-10-22T12:07:43Z) - Curriculum Learning for Reinforcement Learning Domains: A Framework and
Survey [53.73359052511171]
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback.
We present a framework for curriculum learning (CL) in RL, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals.
arXiv Detail & Related papers (2020-03-10T20:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.