CodeV: Empowering LLMs for Verilog Generation through Multi-Level Summarization
- URL: http://arxiv.org/abs/2407.10424v4
- Date: Sat, 20 Jul 2024 16:18:15 GMT
- Title: CodeV: Empowering LLMs for Verilog Generation through Multi-Level Summarization
- Authors: Yang Zhao, Di Huang, Chongxiao Li, Pengwei Jin, Ziyuan Nan, Tianyun Ma, Lei Qi, Yansong Pan, Zhenxing Zhang, Rui Zhang, Xishan Zhang, Zidong Du, Qi Guo, Xing Hu, Yunji Chen,
- Abstract summary: This paper introduces CodeV, a series of open-source instruction-tuned Verilog generation LLMs.
We show that CodeV relatively surpasses the previous open-source SOTA by 14.4% (BetterV in VerilogEval) and 11.3% (RTLCoder in RTLLM) respectively.
- Score: 37.4446786461791
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing complexity and high costs associated with modern processor design have led to a surge in demand for processor design automation. Instruction-tuned large language models (LLMs) have demonstrated remarkable performance in automatically generating code for general-purpose programming languages like Python. However, these methods fail on hardware description languages (HDLs) like Verilog due to the scarcity of high-quality instruction tuning data, as even advanced LLMs like GPT-3.5 exhibit limited performance on Verilog generation. Regarding this issue, we observe that (1) Verilog code collected from the real world has higher quality than those generated by LLMs. (2) LLMs like GPT-3.5 excel in summarizing Verilog code rather than generating it. Based on these observations, this paper introduces CodeV, a series of open-source instruction-tuned Verilog generation LLMs. Instead of generating descriptions first and then getting the corresponding code from advanced LLMs, we prompt the LLM with Verilog code and let the LLM generate the corresponding natural language description by multi-level summarization. Experimental results show that CodeV relatively surpasses the previous open-source SOTA by 14.4% (BetterV in VerilogEval) and 11.3% (RTLCoder in RTLLM) respectively, and also relatively outperforms previous commercial SOTA GPT-4 by 22.1% in VerilogEval.
Related papers
- Large Language Models as Code Executors: An Exploratory Study [29.545321608864295]
This paper pioneers the exploration of Large Language Models (LLMs) as code executors.
We are the first to examine this feasibility across various LLMs, including OpenAI's o1, GPT-4o, GPT-3.5, DeepSeek, and Qwen-Coder.
We introduce an Iterative Instruction Prompting (IIP) technique that processes code snippets line by line, enhancing the accuracy of weaker models by an average of 7.22%.
arXiv Detail & Related papers (2024-10-09T08:23:22Z) - AutoVCoder: A Systematic Framework for Automated Verilog Code Generation using LLMs [27.179391677757565]
We develop AutoVCoder, a framework that significantly improves the correctness of generating Verilog code.
Our framework integrates three novel techniques, including a high-quality hardware dataset generation approach.
AutoVCoder shows a 0.5% and 2.2% improvement in functional correctness on the EvalMachine and EvalHuman benchmarks compared with BetterV.
arXiv Detail & Related papers (2024-07-21T16:42:45Z) - InverseCoder: Unleashing the Power of Instruction-Tuned Code LLMs with Inverse-Instruct [43.7550233177368]
We propose INVERSE-INSTRUCT, which summarizes instructions from code snippets instead of the reverse.
We present a series of code LLMs named InverseCoder, which surpasses the performance of the original code LLMs on a wide range of benchmarks.
arXiv Detail & Related papers (2024-07-08T08:00:05Z) - A Multi-Expert Large Language Model Architecture for Verilog Code Generation [5.159745269633967]
This paper introduces an innovative multi-expert LLM architecture for Verilog code generation (MEV-LLM)
Our architecture uniquely integrates multiple LLMs, each specifically fine-tuned with a dataset that is categorized with respect to a distinct level of design complexity.
Empirical evidence from experiments highlights notable improvements in terms of the percentage of generated Verilog outputs that are syntactically and functionally correct.
arXiv Detail & Related papers (2024-04-11T16:58:29Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
We introduce CodecLM, a framework for adaptively generating high-quality synthetic data for instruction-following abilities.
We first encode seed instructions into metadata, which are concise keywords generated on-the-fly to capture the target instruction distribution.
We also introduce Self-Rubrics and Contrastive Filtering during decoding to tailor data-efficient samples.
arXiv Detail & Related papers (2024-04-08T21:15:36Z) - Data is all you need: Finetuning LLMs for Chip Design via an Automated design-data augmentation framework [50.02710905062184]
This paper proposes an automated design-data augmentation framework, which generates high-volume and high-quality natural language aligned with Verilog and EDA scripts.
The accuracy of Verilog generation surpasses that of the current state-of-the-art open-source Verilog generation model, increasing from 58.8% to 70.6% with the same benchmark.
arXiv Detail & Related papers (2024-03-17T13:01:03Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - Genixer: Empowering Multimodal Large Language Models as a Powerful Data Generator [63.762209407570715]
Genixer is a comprehensive data generation pipeline consisting of four key steps.
A synthetic VQA-like dataset trained with LLaVA1.5 enhances performance on 10 out of 12 multimodal benchmarks.
MLLMs trained with task-specific datasets can surpass GPT-4V in generating complex instruction tuning data.
arXiv Detail & Related papers (2023-12-11T09:44:41Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
We propose LEVER, a simple approach to improve language-to-code generation by learning to verify the generated programs with their execution results.
Specifically, we train verifiers to determine whether a program sampled from the LLMs is correct or not based on the natural language input, the program itself and its execution results.
LEVER consistently improves over the base code LLMs(4.6% to 10.9% with code-davinci) and achieves new state-of-the-art results on all of them.
arXiv Detail & Related papers (2023-02-16T18:23:22Z) - Benchmarking Large Language Models for Automated Verilog RTL Code
Generation [21.747037230069854]
We characterize the ability of large language models (LLMs) to generate useful Verilog.
We construct an evaluation framework comprising test-benches for functional analysis and a flow to test the syntax of Verilog code.
Our findings show that across our problem scenarios, the fine-tuning results in LLMs more capable of producing syntactically correct code.
arXiv Detail & Related papers (2022-12-13T16:34:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.