AutoVCoder: A Systematic Framework for Automated Verilog Code Generation using LLMs
- URL: http://arxiv.org/abs/2407.18333v1
- Date: Sun, 21 Jul 2024 16:42:45 GMT
- Title: AutoVCoder: A Systematic Framework for Automated Verilog Code Generation using LLMs
- Authors: Mingzhe Gao, Jieru Zhao, Zhe Lin, Wenchao Ding, Xiaofeng Hou, Yu Feng, Chao Li, Minyi Guo,
- Abstract summary: We develop AutoVCoder, a framework that significantly improves the correctness of generating Verilog code.
Our framework integrates three novel techniques, including a high-quality hardware dataset generation approach.
AutoVCoder shows a 0.5% and 2.2% improvement in functional correctness on the EvalMachine and EvalHuman benchmarks compared with BetterV.
- Score: 27.179391677757565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, the use of large language models (LLMs) for software code generation, e.g., C/C++ and Python, has proven a great success. However, LLMs still suffer from low syntactic and functional correctness when it comes to the generation of register-transfer level (RTL) code, such as Verilog. To address this issue, in this paper, we develop AutoVCoder, a systematic open-source framework that significantly improves the LLMs' correctness of generating Verilog code and enhances the quality of its output at the same time. Our framework integrates three novel techniques, including a high-quality hardware dataset generation approach, a two-round LLM fine-tuning method and a domain-specific retrieval-augmented generation (RAG) mechanism. Experimental results demonstrate that AutoVCoder outperforms both industrial and academic LLMs in Verilog code generation. Specifically, AutoVCoder shows a 0.5% and 2.2% improvement in functional correctness on the EvalMachine and EvalHuman benchmarks compared with BetterV, and also achieves a 3.4% increase in syntax correctness and a 3.4% increase in functional correctness on the RTLLM benchmark compared with RTLCoder.
Related papers
- Optimizing Code Runtime Performance through Context-Aware Retrieval-Augmented Generation [8.574686422653345]
Auto achieves a 7.3% improvement in execution efficiency over GPT-4o across common generated executable code.
This study introduces an in-context learning approach designed to bridge the gap by enabling LLMs to automatically generate optimized code.
arXiv Detail & Related papers (2025-01-28T04:00:35Z) - LLM2: Let Large Language Models Harness System 2 Reasoning [65.89293674479907]
Large language models (LLMs) have exhibited impressive capabilities across a myriad of tasks, yet they occasionally yield undesirable outputs.
We introduce LLM2, a novel framework that combines an LLM with a process-based verifier.
LLMs2 is responsible for generating plausible candidates, while the verifier provides timely process-based feedback to distinguish desirable and undesirable outputs.
arXiv Detail & Related papers (2024-12-29T06:32:36Z) - PromptV: Leveraging LLM-powered Multi-Agent Prompting for High-quality Verilog Generation [9.990225157705966]
This paper proposes a novel multi-agent prompt learning framework to address limitations and enhance code generation quality.
We show for the first time that multi-agent architectures can effectively mitigate the degeneration risk while improving code error correction capabilities.
arXiv Detail & Related papers (2024-12-15T01:58:10Z) - EDA-Aware RTL Generation with Large Language Models [0.7831852829409273]
Large Language Models (LLMs) have become increasingly popular for generating RTL code.
producing error-free RTL code in a zero-shot setting remains highly challenging for even state-of-the-art LLMs.
We introduce AIvril2, a self-verifying, LLM-agnostic agentic framework aimed at enhancing RTL code generation through iterative corrections of both syntax and functional errors.
arXiv Detail & Related papers (2024-11-21T00:37:51Z) - PerfCodeGen: Improving Performance of LLM Generated Code with Execution Feedback [78.89596149768458]
Large Language Models (LLMs) are widely adopted for assisting in software development tasks.
We propose PerfCodeGen, a training-free framework that enhances the performance of LLM-generated code.
arXiv Detail & Related papers (2024-11-18T06:22:38Z) - OriGen:Enhancing RTL Code Generation with Code-to-Code Augmentation and Self-Reflection [54.775409528658486]
OriGen is a fully open-source framework that incorporates self-reflection capabilities and a novel dataset augmentation methodology.
Our approach employs a code-tocode augmentation technique to enhance the quality of open-source RTL code datasets.
arXiv Detail & Related papers (2024-07-23T07:22:25Z) - CodeV: Empowering LLMs for Verilog Generation through Multi-Level Summarization [37.4446786461791]
This paper introduces CodeV, a series of open-source instruction-tuned Verilog generation LLMs.
We show that CodeV relatively surpasses the previous open-source SOTA by 14.4% (BetterV in VerilogEval) and 11.3% (RTLCoder in RTLLM) respectively.
arXiv Detail & Related papers (2024-07-15T03:57:20Z) - Data is all you need: Finetuning LLMs for Chip Design via an Automated design-data augmentation framework [50.02710905062184]
This paper proposes an automated design-data augmentation framework, which generates high-volume and high-quality natural language aligned with Verilog and EDA scripts.
The accuracy of Verilog generation surpasses that of the current state-of-the-art open-source Verilog generation model, increasing from 58.8% to 70.6% with the same benchmark.
arXiv Detail & Related papers (2024-03-17T13:01:03Z) - Make Every Move Count: LLM-based High-Quality RTL Code Generation Using
MCTS [20.135906487081453]
We present an automated transformer decoding algorithm that integrates Monte Carlo tree-search for lookahead.
For the largest design generated by the state-of-the-art LLM (16-bit adder), our technique can achieve a 31.8% improvement in the area-delay product.
arXiv Detail & Related papers (2024-02-05T18:47:04Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
We investigate data quality for code and find that making the code more structured and readable leads to improved code generation performance of the system.
We build a novel data-cleaning pipeline that uses these principles to transform existing programs.
We evaluate our approach on two challenging algorithmic code generation benchmarks and find that fine-tuning CodeLLaMa-7B improves the performance by up to 30% compared to fine-tuning on the original dataset.
arXiv Detail & Related papers (2023-11-25T02:45:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.