論文の概要: A Multi-Stage Framework for 3D Individual Tooth Segmentation in Dental CBCT
- arxiv url: http://arxiv.org/abs/2407.10433v1
- Date: Mon, 15 Jul 2024 04:23:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 16:20:45.758908
- Title: A Multi-Stage Framework for 3D Individual Tooth Segmentation in Dental CBCT
- Title(参考訳): 歯科用CBCTにおける3次元個別歯の分割のための多段階的枠組み
- Authors: Chunshi Wang, Bin Zhao, Shuxue Ding,
- Abstract要約: コーンビームCT(CBCT)は歯科疾患の診断方法として一般的である。
深層学習に基づく手法は、医用画像処理において説得力のある結果を得た。
歯科用CBCTにおける3次元歯の一般化のための多段階フレームワークを提案する。
- 参考スコア(独自算出の注目度): 7.6057981800052845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cone beam computed tomography (CBCT) is a common way of diagnosing dental related diseases. Accurate segmentation of 3D tooth is of importance for the treatment. Although deep learning based methods have achieved convincing results in medical image processing, they need a large of annotated data for network training, making it very time-consuming in data collection and annotation. Besides, domain shift widely existing in the distribution of data acquired by different devices impacts severely the model generalization. To resolve the problem, we propose a multi-stage framework for 3D tooth segmentation in dental CBCT, which achieves the third place in the "Semi-supervised Teeth Segmentation" 3D (STS-3D) challenge. The experiments on validation set compared with other semi-supervised segmentation methods further indicate the validity of our approach.
- Abstract(参考訳): コーンビームCT(CBCT)は歯科疾患の診断方法として一般的である。
3次元歯の正確なセグメンテーションは治療において重要である。
深層学習に基づく手法は医用画像処理において説得力のある結果を得たが、ネットワークトレーニングには大量の注釈付きデータが必要であるため、データ収集とアノテーションに非常に時間がかかる。
さらに、異なるデバイスによって取得されたデータの分布に広く存在するドメインシフトは、モデルの一般化に深刻な影響を及ぼす。
この問題を解決するために, 歯科用CBCTにおける3次元歯のセグメンテーションのための多段階フレームワークを提案し, 3D (STS-3D) の課題において第3位を獲得した。
また, 他の半教師付きセグメンテーション法との比較実験により, 本手法の有効性が示唆された。
関連論文リスト
- Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3次元医用画像のセグメンテーションは、疾患の診断と治療計画に重要な意味を持つ課題である。
近年の深層学習の進歩は、完全に教師付き医療画像のセグメンテーションを著しく強化している。
本稿では,3次元医用画像に特化して設計された,確率的適応型弱教師付き学習パイプラインを提案する。
論文 参考訳(メタデータ) (2024-03-05T00:46:53Z) - TSegFormer: 3D Tooth Segmentation in Intraoral Scans with Geometry
Guided Transformer [47.18526074157094]
歯科用歯冠および歯肉の詳細な3D情報を提供するために, 歯科用光学式歯内スキャナー (IOS) が広く用いられている。
既往の方法は複雑な境界においてエラーを起こしやすく、患者間で不満足な結果を示す。
マルチタスク3Dトランスフォーマアーキテクチャを用いて, 歯の局所的および大域的依存関係とIOS点群における歯肉の象牙質の両方をキャプチャするTSegFormerを提案する。
論文 参考訳(メタデータ) (2023-11-22T08:45:01Z) - Processing and Segmentation of Human Teeth from 2D Images using Weakly
Supervised Learning [1.6385815610837167]
そこで本研究では,手動アノテーションの必要性を低減するために,歯のセグメンテーションに対する弱教師付きアプローチを提案する。
本手法は,キーポイント検出ネットワークからの出力ヒートマップと中間特徴マップを用いて,セグメント化プロセスの導出を行う。
本手法は, 実際の歯科応用において, 歯のセグメンテーションに費用対効果, 効率のよいソリューションを提供する。
論文 参考訳(メタデータ) (2023-11-13T15:25:55Z) - 3D-U-SAM Network For Few-shot Tooth Segmentation in CBCT Images [22.86724024199165]
本稿では, 3次元画像分割のための新しい3D-U-SAMネットワークを提案する。
3次元データセット上での2次元事前学習重み付けの問題を解決するために,畳み込み近似法を採用した。
本手法の有効性は, アブレーション実験, 比較実験, 試料サイズ実験で実証された。
論文 参考訳(メタデータ) (2023-09-20T02:32:09Z) - Dual Multi-scale Mean Teacher Network for Semi-supervised Infection
Segmentation in Chest CT Volume for COVID-19 [76.51091445670596]
CT(Computed tomography)データから肺感染症を自動的に検出することは、COVID-19と戦う上で重要な役割を担っている。
現在の新型コロナウイルス感染症のセグメンテーションのほとんどは、主に3Dシーケンシャルな制約を欠いた2D CT画像に依存している。
既存の3次元CTセグメンテーション法では,3次元ボリュームにおける複数レベルの受容場サイズを達成できない単一スケールの表現に焦点が当てられている。
論文 参考訳(メタデータ) (2022-11-10T13:11:21Z) - TFormer: 3D Tooth Segmentation in Mesh Scans with Geometry Guided
Transformer [37.47317212620463]
光学式口腔内スキャナー (IOS) は, 歯冠および歯肉の3次元および高分解能な幾何学的情報を提供するデジタル歯科において広く用いられている。
従来の方法では, 複雑な歯歯列境界や歯肉境界にエラーが生じやすいため, 様々な患者に対して不満足な結果が生じることが多い。
大規模かつ高解像度の3D IOSデータセットを用いて評価した3Dトランスフォーマーアーキテクチャに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-10-29T15:20:54Z) - CTooth: A Fully Annotated 3D Dataset and Benchmark for Tooth Volume
Segmentation on Cone Beam Computed Tomography Images [19.79983193894742]
3次元歯のセグメンテーションはコンピュータ支援型歯科診断と治療の前提条件である。
深層学習に基づくセグメンテーション手法は説得力のある結果をもたらすが、訓練には大量の基礎的真理を必要とする。
そこで本研究では,歯金規格のCToothを完全注釈付きコーンビームで計算した。
論文 参考訳(メタデータ) (2022-06-17T13:48:35Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
TS-MDLの最初の段階では、mphiMeshSegNetは0.953pm0.076$で平均Dice類似係数(DSC)に達した。
PointNet-Reg は平均絶対誤差 (MAE) が 0.623pm0.718, mm$ であり、ランドマーク検出の他のネットワークよりも優れている。
論文 参考訳(メタデータ) (2021-09-24T13:00:26Z) - A fully automated method for 3D individual tooth identification and
segmentation in dental CBCT [1.567576360103422]
本稿では,歯科用CBCT画像から3次元個別歯を同定・分別する完全自動化手法を提案する。
提案手法は,ディープラーニングに基づく階層型多段階モデルを構築することで,上記の課題に対処する。
実験結果から, 本法は歯の識別に93.35%のF1スコア, 個々の3次元歯のセグメンテーションに94.79%のDice類似係数を達成できた。
論文 参考訳(メタデータ) (2021-02-11T15:07:23Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。