論文の概要: 3D Dental Model Segmentation with Geometrical Boundary Preserving
- arxiv url: http://arxiv.org/abs/2503.23702v1
- Date: Mon, 31 Mar 2025 04:00:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:35:23.611076
- Title: 3D Dental Model Segmentation with Geometrical Boundary Preserving
- Title(参考訳): 幾何学的境界保存による3次元歯科モデルセグメンテーション
- Authors: Shufan Xi, Zexian Liu, Junlin Chang, Hongyu Wu, Xiaogang Wang, Aimin Hao,
- Abstract要約: 3次元口腔内スキャンメッシュはデジタル歯科診断において広く使われており、3次元口腔内スキャンメッシュの分節化は重要な予備課題である。
深層学習に基づく手法はクラウンの高精度なセグメンテーションを可能にする。
しかし、クラウンとガムの接合部のセグメンテーション精度は依然として平均以下である。
- 参考スコア(独自算出の注目度): 19.232921210620447
- License:
- Abstract: 3D intraoral scan mesh is widely used in digital dentistry diagnosis, segmenting 3D intraoral scan mesh is a critical preliminary task. Numerous approaches have been devised for precise tooth segmentation. Currently, the deep learning-based methods are capable of the high accuracy segmentation of crown. However, the segmentation accuracy at the junction between the crown and the gum is still below average. Existing down-sampling methods are unable to effectively preserve the geometric details at the junction. To address these problems, we propose CrossTooth, a boundary-preserving segmentation method that combines 3D mesh selective downsampling to retain more vertices at the tooth-gingiva area, along with cross-modal discriminative boundary features extracted from multi-view rendered images, enhancing the geometric representation of the segmentation network. Using a point network as a backbone and incorporating image complementary features, CrossTooth significantly improves segmentation accuracy, as demonstrated by experiments on a public intraoral scan dataset.
- Abstract(参考訳): 3次元口腔内スキャンメッシュはデジタル歯科診断において広く使われており、3次元口腔内スキャンメッシュの分節化は重要な予備課題である。
正確な歯のセグメンテーションのために多くのアプローチが考案されている。
現在、深層学習に基づく手法は、クラウンの高精度なセグメンテーションを可能にする。
しかし、クラウンとガムの接合部のセグメンテーション精度は依然として平均以下である。
既存のダウンサンプリング手法では、接合部における幾何学的詳細を効果的に保存することはできない。
これらの問題に対処するために,歯肉領域により多くの頂点を保持するために3次元メッシュ選択的なダウンサンプリングを組み合わせる境界保存セグメンテーション手法であるCrossToothと,マルチビューレンダリング画像から抽出した相互識別境界特性を併用し,セグメンテーションネットワークの幾何学的表現を向上するCrossToothを提案する。
ポイントネットワークをバックボーンとして使用し、画像補完機能を組み込んだCrossToothは、公衆の口腔内スキャンデータセットで実証されたように、セグメンテーションの精度を大幅に向上する。
関連論文リスト
- A Multi-Stage Framework for 3D Individual Tooth Segmentation in Dental CBCT [7.6057981800052845]
コーンビームCT(CBCT)は歯科疾患の診断方法として一般的である。
深層学習に基づく手法は、医用画像処理において説得力のある結果を得た。
歯科用CBCTにおける3次元歯の一般化のための多段階フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-15T04:23:28Z) - Processing and Segmentation of Human Teeth from 2D Images using Weakly
Supervised Learning [1.6385815610837167]
そこで本研究では,手動アノテーションの必要性を低減するために,歯のセグメンテーションに対する弱教師付きアプローチを提案する。
本手法は,キーポイント検出ネットワークからの出力ヒートマップと中間特徴マップを用いて,セグメント化プロセスの導出を行う。
本手法は, 実際の歯科応用において, 歯のセグメンテーションに費用対効果, 効率のよいソリューションを提供する。
論文 参考訳(メタデータ) (2023-11-13T15:25:55Z) - TFormer: 3D Tooth Segmentation in Mesh Scans with Geometry Guided
Transformer [37.47317212620463]
光学式口腔内スキャナー (IOS) は, 歯冠および歯肉の3次元および高分解能な幾何学的情報を提供するデジタル歯科において広く用いられている。
従来の方法では, 複雑な歯歯列境界や歯肉境界にエラーが生じやすいため, 様々な患者に対して不満足な結果が生じることが多い。
大規模かつ高解像度の3D IOSデータセットを用いて評価した3Dトランスフォーマーアーキテクチャに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-10-29T15:20:54Z) - Simultaneous Bone and Shadow Segmentation Network using Task
Correspondence Consistency [60.378180265885945]
骨と影の同時分割のための共有トランスフォーマベースエンコーダとタスク独立デコーダを備えた単一エンドツーエンドネットワークを提案する。
また,骨表面とそれに対応する影の相互依存性を利用してセグメンテーションを改良する対応整合損失も導入する。
論文 参考訳(メタデータ) (2022-06-16T22:37:05Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
TS-MDLの最初の段階では、mphiMeshSegNetは0.953pm0.076$で平均Dice類似係数(DSC)に達した。
PointNet-Reg は平均絶対誤差 (MAE) が 0.623pm0.718, mm$ であり、ランドマーク検出の他のネットワークよりも優れている。
論文 参考訳(メタデータ) (2021-09-24T13:00:26Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
超音波を用いた新しいカテーテルセグメンテーション法を提案する。
提案手法は,1ボリュームあたり0.25秒の効率で最先端の性能を実現した。
論文 参考訳(メタデータ) (2020-10-19T13:56:22Z) - Deep Negative Volume Segmentation [60.44793799306154]
対象物を取り囲むすべての組織間で空の空間を分割する3Dセグメント化タスクに対する新しい角度を提案する。
我々のアプローチは骨分割のためのV-Netを含むエンドツーエンドパイプラインである。
顎顔面領域の専門医が注釈を付した50名の患者データセットにおけるCTスキャンの考え方を検証した。
論文 参考訳(メタデータ) (2020-06-22T16:55:23Z) - Pose-Aware Instance Segmentation Framework from Cone Beam CT Images for
Tooth Segmentation [9.880428545498662]
コーンビームCT(CBCT)画像からの個々の歯のセグメンテーションは矯正構造の解剖学的理解に不可欠である。
CBCT画像中の重金属人工物の存在は、個々の歯の正確なセグメンテーションを妨げる。
本稿では,金属製品に対して堅牢なインスタンスセグメンテーションフレームワークを活用するために,ピクセルワイズラベリングのためのニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-02-06T07:57:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。