Inference at the data's edge: Gaussian processes for modeling and inference under model-dependency, poor overlap, and extrapolation
- URL: http://arxiv.org/abs/2407.10442v1
- Date: Mon, 15 Jul 2024 05:09:50 GMT
- Title: Inference at the data's edge: Gaussian processes for modeling and inference under model-dependency, poor overlap, and extrapolation
- Authors: Soonhong Cho, Doeun Kim, Chad Hazlett,
- Abstract summary: The Gaussian Process (GP) is a flexible non-linear regression approach.
It provides a principled approach to handling our uncertainty over predicted (counterfactual) values.
This is especially valuable under conditions of extrapolation or weak overlap.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Gaussian Process (GP) is a highly flexible non-linear regression approach that provides a principled approach to handling our uncertainty over predicted (counterfactual) values. It does so by computing a posterior distribution over predicted point as a function of a chosen model space and the observed data, in contrast to conventional approaches that effectively compute uncertainty estimates conditionally on placing full faith in a fitted model. This is especially valuable under conditions of extrapolation or weak overlap, where model dependency poses a severe threat. We first offer an accessible explanation of GPs, and provide an implementation suitable to social science inference problems. In doing so we reduce the number of user-chosen hyperparameters from three to zero. We then illustrate the settings in which GPs can be most valuable: those where conventional approaches have poor properties due to model-dependency/extrapolation in data-sparse regions. Specifically, we apply it to (i) comparisons in which treated and control groups have poor covariate overlap; (ii) interrupted time-series designs, where models are fitted prior to an event by extrapolated after it; and (iii) regression discontinuity, which depends on model estimates taken at or just beyond the edge of their supporting data.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Semi-supervised Regression Analysis with Model Misspecification and High-dimensional Data [8.619243141968886]
We present an inference framework for estimating regression coefficients in conditional mean models.
We develop an augmented inverse probability weighted (AIPW) method, employing regularized estimators for both propensity score (PS) and outcome regression (OR) models.
Our theoretical findings are verified through extensive simulation studies and a real-world data application.
arXiv Detail & Related papers (2024-06-20T00:34:54Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - PriSTI: A Conditional Diffusion Framework for Spatiotemporal Imputation [35.62945607302276]
We propose a conditional diffusion framework for Stemporal imputation with the prior modeling, named PriSTI.
PriSTI outperforms existing imputation methods in various missing patterns of different real-world data, and effectively handles scenarios such as high missing rates and sensor failure.
arXiv Detail & Related papers (2023-02-20T03:52:53Z) - Data-Driven Sample Average Approximation with Covariate Information [0.0]
We study optimization for data-driven decision-making when we have observations of the uncertain parameters within the optimization model together with concurrent observations of coparametrics.
We investigate three data-driven frameworks that integrate a machine learning prediction model within a programming sample average approximation (SAA) for approximating the solution to this problem.
arXiv Detail & Related papers (2022-07-27T14:45:04Z) - Density Estimation with Autoregressive Bayesian Predictives [1.5771347525430772]
In the context of density estimation, the standard Bayesian approach is to target the posterior predictive.
We develop a novel parameterization of the bandwidth using an autoregressive neural network that maps the data into a latent space.
arXiv Detail & Related papers (2022-06-13T20:43:39Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
Uncertainty is the only certainty there is.
Traditionally, the direct regression formulation is considered and the uncertainty is modeled by modifying the output space to a certain family of probabilistic distributions.
How to model the uncertainty within the present-day technologies for regression remains an open issue.
arXiv Detail & Related papers (2021-03-25T06:56:09Z) - Identification of Latent Variables From Graphical Model Residuals [0.0]
We present a novel method to control for the latent space when estimating a DAG by iteratively deriving proxies for the latent space from the residuals of the inferred model.
We show that any improvement of prediction of an outcome is intrinsically capped and cannot rise beyond a certain limit as compared to the confounded model.
arXiv Detail & Related papers (2021-01-07T02:28:49Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.