論文の概要: PULPo: Probabilistic Unsupervised Laplacian Pyramid Registration
- arxiv url: http://arxiv.org/abs/2407.10567v1
- Date: Mon, 15 Jul 2024 09:30:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 15:40:56.930844
- Title: PULPo: Probabilistic Unsupervised Laplacian Pyramid Registration
- Title(参考訳): PULPo:確率論的に教師なしのラプラシアンピラミッド登録
- Authors: Leonard Siegert, Paul Fischer, Mattias P. Heinrich, Christian F. Baumgartner,
- Abstract要約: 変形可能な画像登録は多くの医療画像応用に基礎がある。
本研究では不確実な定量化が可能な確率的変形可能な登録法であるPULPoを提案する。
- 参考スコア(独自算出の注目度): 3.2868275835047243
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deformable image registration is fundamental to many medical imaging applications. Registration is an inherently ambiguous task often admitting many viable solutions. While neural network-based registration techniques enable fast and accurate registration, the majority of existing approaches are not able to estimate uncertainty. Here, we present PULPo, a method for probabilistic deformable registration capable of uncertainty quantification. PULPo probabilistically models the distribution of deformation fields on different hierarchical levels combining them using Laplacian pyramids. This allows our method to model global as well as local aspects of the deformation field. We evaluate our method on two widely used neuroimaging datasets and find that it achieves high registration performance as well as substantially better calibrated uncertainty quantification compared to the current state-of-the-art.
- Abstract(参考訳): 変形可能な画像登録は多くの医療画像応用に基礎がある。
登録は本質的にあいまいな作業であり、多くの実行可能なソリューションを許可することが多い。
ニューラルネットワークベースの登録技術は、高速かつ正確な登録を可能にするが、既存のアプローチの大部分は、不確実性を見積もることができない。
本稿では不確実な定量化が可能な確率的変形可能な登録法であるPULPoを提案する。
PULPoはラプラシアピラミッドを用いて、異なる階層レベルの変形場の分布を確率論的にモデル化する。
これにより、変形場の局所的な側面と同様に、大域的にモデル化することができる。
提案手法を広範に使用している2つのニューロイメージングデータセット上で評価した結果,登録性能が向上し,現在の最先端技術と比較して精度の高いキャリブレーション不確実性定量化が可能であることが判明した。
関連論文リスト
- Hierarchical uncertainty estimation for learning-based registration in neuroimaging [10.964653898591413]
本研究では,空間的位置の程度で推定される不確実性を伝播する原理的手法を提案する。
実験により,脳MRI画像の登録精度が向上することが確認された。
論文 参考訳(メタデータ) (2024-10-11T23:12:16Z) - From Registration Uncertainty to Segmentation Uncertainty [11.294691606431526]
本稿では, 画像登録において, エピステミックとアレタリックのセグメンテーションの不確実性の両方を同時に推定する新しい枠組みを提案する。
既存の登録不確実性を推定する手法とともにセグメンテーションの不確実性を導入することにより、画像登録の異なる段階における潜在的な不確実性について重要な洞察を提供する。
論文 参考訳(メタデータ) (2024-03-08T07:16:14Z) - GSMorph: Gradient Surgery for cine-MRI Cardiac Deformable Registration [62.41725951450803]
学習に基づく変形可能な登録は、フィールドの登録精度と滑らかさをトレードオフする重み付けされた目的関数に依存する。
我々は,GSMorphと呼ばれる勾配手術機構に基づく登録モデルを構築し,複数の損失に対してパラメータフリーな高バランスを実現する。
提案手法はモデルに依存しないため,パラメータの追加や推論の遅延を伴わずに,任意のディープ登録ネットワークにマージすることができる。
論文 参考訳(メタデータ) (2023-06-26T13:32:09Z) - DiffuseMorph: Unsupervised Deformable Image Registration Along
Continuous Trajectory Using Diffusion Models [31.826844124173984]
DiffuseMorphと呼ばれる拡散モデルに基づく新しい確率的画像登録手法を提案する。
本モデルは,動画像と固定画像の変形のスコア関数を学習する。
本手法は, トポロジー保存機能により, 柔軟かつ高精度な変形を可能とする。
論文 参考訳(メタデータ) (2021-12-09T08:41:23Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
ほとんどの深層学習に基づく登録法は、所望の変形場が全世界的に滑らかで連続的であると仮定する。
本稿では、より優れた登録性能とリアルな変形場を得るために、弱い教師付き深部不連続保存画像登録ネットワーク(DDIR)を提案する。
本研究では, 心臓磁気共鳴(MR)画像の登録実験において, 登録精度を大幅に向上し, より現実的な変形を予測できることを実証した。
論文 参考訳(メタデータ) (2021-07-09T13:35:59Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Constraining Volume Change in Learned Image Registration for Lung CTs [4.37795447716986]
本稿では,従来の肺登録法の重要な戦略を特定し,深層学習法の開発に成功した。
我々は、粗い方法で画像登録の最適化を解くことができるガウスピラミドに基づくマルチレベルフレームワークを採用している。
本研究は, COPDGeneデータセット上で, 従来よりもはるかに短い実行時間で, 従来の登録方式と比較して, 最先端の成果をアーカイブすることを示す。
論文 参考訳(メタデータ) (2020-11-29T14:09:31Z) - Flexible Bayesian Modelling for Nonlinear Image Registration [0.3914676152740142]
本稿では,画像群を共通空間に正確に整列させることができる微分型登録アルゴリズムについて述べる。
その考え方は、形状と外観のばらつきを考慮に入れた確率的グラフィカルモデルで推論を行うことである。
モデルは3次元ヒト脳スキャンのオブジェクト間登録において評価される。
論文 参考訳(メタデータ) (2020-06-03T15:33:14Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
我々は、絡み合った多体量子状態をコンパクトに表現するための、新しい非パラメトリック形式を示す。
この状態は、非常にコンパクトで、体系的に即効性があり、サンプリングに効率的である。
また、量子状態に対する普遍的な近似器として証明されており、データセットのサイズが大きくなるにつれて、絡み合った多体状態も捉えることができる。
論文 参考訳(メタデータ) (2020-02-27T15:54:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。