General algorithm of assigning raster features to vector maps at any resolution or scale
- URL: http://arxiv.org/abs/2407.10599v1
- Date: Mon, 15 Jul 2024 10:24:00 GMT
- Title: General algorithm of assigning raster features to vector maps at any resolution or scale
- Authors: Nan Xu, Mark Stevenson, Kerry A. Nice, Sachith Seneviratne,
- Abstract summary: We propose an algorithm of assigning features from data (concentrations of air pollutants) to vector components (roads represented by edges) in city maps.
We demonstrate it to assign accurate PM$_2.5$ and NO$_2$ concentrations to roads in 1692 cities globally for a potential graph-based pollution analysis.
- Score: 18.09674055911759
- License:
- Abstract: The fusion of multi-source data is essential for a comprehensive analysis of geographic applications. Due to distinct data structures, the fusion process tends to encounter technical difficulties in terms of preservation of the intactness of each source data. Furthermore, a lack of generalized methods is a problem when the method is expected to be applicable in multiple resolutions, sizes, or scales of raster and vector data, to what is being processed. In this study, we propose a general algorithm of assigning features from raster data (concentrations of air pollutants) to vector components (roads represented by edges) in city maps through the iterative construction of virtual layers to expand geolocation from a city centre to boundaries in a 2D projected map. The construction follows the rule of perfect squares with a slight difference depending on the oddness or evenness of the ratio of city size to raster resolution. We demonstrate the algorithm by applying it to assign accurate PM$_{2.5}$ and NO$_{2}$ concentrations to roads in 1692 cities globally for a potential graph-based pollution analysis. This method could pave the way for agile studies on urgent climate issues by providing a generic and efficient method to accurately fuse multiple datasets of varying scales and compositions.
Related papers
- Decoupling Fine Detail and Global Geometry for Compressed Depth Map Super-Resolution [55.9977636042469]
Bit-depth compression produces a uniform depth representation in regions with subtle variations, hindering the recovery of detailed information.
densely distributed random noise reduces the accuracy of estimating the global geometric structure of the scene.
We propose a novel framework, termed geometry-decoupled network (GDNet), for compressed depth map super-resolution.
arXiv Detail & Related papers (2024-11-05T16:37:30Z) - HPix: Generating Vector Maps from Satellite Images [0.0]
We propose a novel method called HPix, which utilizes modified Generative Adversarial Networks (GANs) to generate vector tile map from satellite images.
Through empirical evaluations, our proposed approach showcases its effectiveness in producing highly accurate and visually captivating vector tile maps.
We further extend our study's application to include mapping of road intersections and building footprints cluster based on their area.
arXiv Detail & Related papers (2024-07-18T16:54:02Z) - 360 Layout Estimation via Orthogonal Planes Disentanglement and Multi-view Geometric Consistency Perception [56.84921040837699]
Existing panoramic layout estimation solutions tend to recover room boundaries from a vertically compressed sequence, yielding imprecise results.
We propose an orthogonal plane disentanglement network (termed DOPNet) to distinguish ambiguous semantics.
We also present an unsupervised adaptation technique tailored for horizon-depth and ratio representations.
Our solution outperforms other SoTA models on both monocular layout estimation and multi-view layout estimation tasks.
arXiv Detail & Related papers (2023-12-26T12:16:03Z) - Combining geolocation and height estimation of objects from street level
imagery [5.887281983256354]
We propose a pipeline for combined multi-class object geolocation and height estimation from street level RGB imagery.
The proposed technique uses image metadata along with coordinates of objects detected in the image plane as found by a custom-trained Convolutional Neural Network.
arXiv Detail & Related papers (2023-05-14T19:40:02Z) - Semi-supervised Learning of Pushforwards For Domain Translation &
Adaptation [3.800498098285222]
Given two probability densities on related data spaces, we seek a map pushing one density to the other.
For maps to have utility in a broad application space, the map must be available to apply on out-of-sample data points.
We introduce a novel pushforward map learning algorithm that utilizes normalizing flows to parameterize the map.
arXiv Detail & Related papers (2023-04-18T00:35:32Z) - SketchSampler: Sketch-based 3D Reconstruction via View-dependent Depth
Sampling [75.957103837167]
Reconstructing a 3D shape based on a single sketch image is challenging due to the large domain gap between a sparse, irregular sketch and a regular, dense 3D shape.
Existing works try to employ the global feature extracted from sketch to directly predict the 3D coordinates, but they usually suffer from losing fine details that are not faithful to the input sketch.
arXiv Detail & Related papers (2022-08-14T16:37:51Z) - Learning Implicit Feature Alignment Function for Semantic Segmentation [51.36809814890326]
Implicit Feature Alignment function (IFA) is inspired by the rapidly expanding topic of implicit neural representations.
We show that IFA implicitly aligns the feature maps at different levels and is capable of producing segmentation maps in arbitrary resolutions.
Our method can be combined with improvement on various architectures, and it achieves state-of-the-art accuracy trade-off on common benchmarks.
arXiv Detail & Related papers (2022-06-17T09:40:14Z) - Super-resolution GANs of randomly-seeded fields [68.8204255655161]
We propose a novel super-resolution generative adversarial network (GAN) framework to estimate field quantities from random sparse sensors.
The algorithm exploits random sampling to provide incomplete views of the high-resolution underlying distributions.
The proposed technique is tested on synthetic databases of fluid flow simulations, ocean surface temperature distributions measurements, and particle image velocimetry data.
arXiv Detail & Related papers (2022-02-23T18:57:53Z) - Sci-Net: a Scale Invariant Model for Building Detection from Aerial
Images [0.0]
We propose a Scale-invariant neural network (Sci-Net) that is able to segment buildings present in aerial images at different spatial resolutions.
Specifically, we modified the U-Net architecture and fused it with dense Atrous Spatial Pyramid Pooling (ASPP) to extract fine-grained multi-scale representations.
arXiv Detail & Related papers (2021-11-12T16:45:20Z) - Cascaded Residual Density Network for Crowd Counting [63.714719914701014]
We propose a novel Cascaded Residual Density Network (CRDNet) in a coarse-to-fine approach to generate the high-quality density map for crowd counting more accurately.
A novel additional local count loss is presented to refine the accuracy of crowd counting.
arXiv Detail & Related papers (2021-07-29T03:07:11Z) - BikNN: Anomaly Estimation in Bilateral Domains with k-Nearest Neighbors [1.2183405753834562]
A novel framework for anomaly estimation is proposed in this paper.
We attempt to estimate the degree of anomaly in both spatial and density domains.
Our method takes into account both the spatial domain and the density domain and can be adapted to different datasets by adjusting a few parameters manually.
arXiv Detail & Related papers (2021-05-11T13:45:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.