論文の概要: Qwen2 Technical Report
- arxiv url: http://arxiv.org/abs/2407.10671v1
- Date: Mon, 15 Jul 2024 12:35:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 15:21:26.981666
- Title: Qwen2 Technical Report
- Title(参考訳): Qwen2テクニカルレポート
- Authors: An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Zeyu Cui, Zhenru Zhang, Zhihao Fan,
- Abstract要約: Qwen2は、前機種のQwen1.5を含む、これまでのほとんどのオープンウェイトモデルを上回っている。
言語理解、生成、多言語習熟、コーディング、数学、推論に関する様々なベンチマークにおいて、プロプライエタリなモデルと比較して、競争力のあるパフォーマンスを示す。
Qwen2は、英語、中国語、スペイン語、フランス語、ドイツ語、アラビア語、ロシア語、韓国語、日本語、タイ語、ベトナム語など、約30の言語で熟練した堅牢な多言語機能を示している。
- 参考スコア(独自算出の注目度): 139.78227859261784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This report introduces the Qwen2 series, the latest addition to our large language models and large multimodal models. We release a comprehensive suite of foundational and instruction-tuned language models, encompassing a parameter range from 0.5 to 72 billion, featuring dense models and a Mixture-of-Experts model. Qwen2 surpasses most prior open-weight models, including its predecessor Qwen1.5, and exhibits competitive performance relative to proprietary models across diverse benchmarks on language understanding, generation, multilingual proficiency, coding, mathematics, and reasoning. The flagship model, Qwen2-72B, showcases remarkable performance: 84.2 on MMLU, 37.9 on GPQA, 64.6 on HumanEval, 89.5 on GSM8K, and 82.4 on BBH as a base language model. The instruction-tuned variant, Qwen2-72B-Instruct, attains 9.1 on MT-Bench, 48.1 on Arena-Hard, and 35.7 on LiveCodeBench. Moreover, Qwen2 demonstrates robust multilingual capabilities, proficient in approximately 30 languages, spanning English, Chinese, Spanish, French, German, Arabic, Russian, Korean, Japanese, Thai, Vietnamese, and more, underscoring its versatility and global reach. To foster community innovation and accessibility, we have made the Qwen2 model weights openly available on Hugging Face1 and ModelScope2, and the supplementary materials including example code on GitHub3. These platforms also include resources for quantization, fine-tuning, and deployment, facilitating a wide range of applications and research endeavors.
- Abstract(参考訳): 本稿では,我々の大規模言語モデルと大規模マルチモーダルモデルへの最新の追加であるQwen2シリーズを紹介する。
我々は、0.5から72億までのパラメータを包含し、高密度モデルとMixture-of-Expertsモデルを備えた、基礎的および命令調整型言語モデルの包括的スイートをリリースする。
Qwen2は、前身のQwen1.5を含む、これまでのほとんどのオープンウェイトモデルを超えており、言語理解、生成、多言語習熟、コーディング、数学、推論に関する様々なベンチマークにおいて、プロプライエタリなモデルと比較して競争力のある性能を示している。
フラッグシップモデルであるQwen2-72Bは、MMLUで84.2、GPQAで37.9、HumanEvalで64.6、GSM8Kで89.5、BBHで84.2、ベース言語モデルで82.4など、優れた性能を発揮した。
命令調整型であるQwen2-72B-InstructはMT-Benchで9.1、Arena-Hardで48.1、LiveCodeBenchで35.7に達した。
さらにQwen2は、英語、中国語、スペイン語、フランス語、ドイツ語、アラビア語、ロシア語、韓国語、日本語、タイ語、ベトナム語など、約30の言語で熟練した堅牢な多言語機能を示している。
コミュニティのイノベーションとアクセシビリティを促進するため、私たちは、Hugging Face1とModelScope2のQwen2モデルウェイトと、GitHub3のサンプルコードを含む追加資料を公開しました。
これらのプラットフォームには、量子化、微調整、デプロイメントのためのリソースが含まれており、幅広いアプリケーションや研究の取り組みを容易にしている。
関連論文リスト
- Poro 34B and the Blessing of Multilinguality [3.270981284471548]
Poro 34Bは、フィンランド語、英語、プログラミング言語の1兆トークンのために訓練された34億のパラメータモデルである。
フィンランド語における既存モデルの能力を大幅に向上するモデルを,多言語学習アプローチにより生成できることが示される。
論文 参考訳(メタデータ) (2024-04-02T11:34:12Z) - Assessing Translation capabilities of Large Language Models involving
English and Indian Languages [4.067706269490143]
機械翻訳を英語と22のインド語を含む課題として用いて,大規模言語モデルの多言語的機能について検討する。
パラメータ効率のよいLoRAなどの微調整手法と,さらに完全な微調整を併用して,これらの大規模言語モデルを微調整する。
その結果,平均BLEUスコアは13.42,15.93,12.13,12.30,12.07,CHRFスコアは43.98,46.99,42.55,42.42,45.39であった。
論文 参考訳(メタデータ) (2023-11-15T18:58:19Z) - Qwen Technical Report [132.54304067403922]
当社の大規模言語モデルシリーズの最初のインストールであるQwenを紹介します。
Qwenはトレーニング済みの言語モデルの基本であり、Qwen-Chatは人間のアライメント技術で微調整されたチャットモデルである。
また、コーディング特化モデルであるCode-QwenとCode-Qwen-Chatも開発し、数学に焦点を当てたMath-Qwen-Chatも開発しました。
論文 参考訳(メタデータ) (2023-09-28T17:07:49Z) - Baichuan 2: Open Large-scale Language Models [51.56361715162972]
我々は、70億と13億のパラメータを含む大規模な多言語言語モデルであるBaichuan 2を、2.6兆のトークン上でスクラッチからトレーニングする。
Baichuan 2は、MMLU、CMMLU、GSM8K、HumanEvalなどの公開ベンチマークで、同様のサイズの他のオープンソースモデルにマッチするか、より優れています。
論文 参考訳(メタデータ) (2023-09-19T04:13:22Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
我々は6400億(B)トークンでトレーニングされた多言語大言語モデル(LLM)であるPolyLMについて述べる。
その多言語的能力を高めるために,1) バイリンガルデータをトレーニングデータに統合し,2) 事前学習中に英語以外のデータの比率を30%から60%に引き上げるカリキュラム学習戦略を採用する。
さらに,モデル微調整のために,132.7Kの多言語命令を自動的に生成する多言語自己指示手法を提案する。
論文 参考訳(メタデータ) (2023-07-12T09:00:37Z) - Youku-mPLUG: A 10 Million Large-scale Chinese Video-Language Dataset for
Pre-training and Benchmarks [63.09588102724274]
中国最大の高品質ビデオ言語データセットであるYouku-mPLUGをリリースする。
Youku-mPLUGには、大規模な事前トレーニングのための45のさまざまなカテゴリにわたる4億の生のビデオからフィルタリングされた1000万の中国製ビデオテキストペアが含まれている。
我々は、クロスモーダル検索、ビデオキャプション、ビデオカテゴリ分類の3つの一般的なビデオ言語タスクをカバーする、人手による最大のベンチマークを構築した。
論文 参考訳(メタデータ) (2023-06-07T11:52:36Z) - SERENGETI: Massively Multilingual Language Models for Africa [5.945320097465418]
SERENGETIは517のアフリカの言語と言語を包含する多言語言語モデルである。
我々は、20のデータセットにまたがる8つの自然言語理解タスクに関する新しいモデルを評価し、4-23のアフリカの言語をカバーする4mPLMと比較した。
論文 参考訳(メタデータ) (2022-12-21T05:54:14Z) - Few-shot Learning with Multilingual Language Models [66.49496434282564]
多様な言語群をカバーするバランスの取れたコーパス上で,多言語の自動回帰言語モデルを訓練する。
私たちの最大のモデルは、20以上の代表言語で数ショットの学習において、新しい最先端の技術を定めています。
本稿では,モデルがどこで成功し,失敗するかを詳細に分析し,特に言語間の文脈内学習を可能にすることを示す。
論文 参考訳(メタデータ) (2021-12-20T16:52:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。