ISMRNN: An Implicitly Segmented RNN Method with Mamba for Long-Term Time Series Forecasting
- URL: http://arxiv.org/abs/2407.10768v5
- Date: Sun, 4 Aug 2024 07:53:03 GMT
- Title: ISMRNN: An Implicitly Segmented RNN Method with Mamba for Long-Term Time Series Forecasting
- Authors: GaoXiang Zhao, Li Zhou, XiaoQiang Wang,
- Abstract summary: Long time series forecasting aims to utilize historical information to forecast future states over extended horizons.
Traditional RNN-based series forecasting methods struggle to effectively address long-term dependencies and gradient issues in long time series problems.
Recently, SegRNN has emerged as a leading RNN-based model tailored for long-term series forecasting.
- Score: 6.125620036017928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long time series forecasting aims to utilize historical information to forecast future states over extended horizons. Traditional RNN-based series forecasting methods struggle to effectively address long-term dependencies and gradient issues in long time series problems. Recently, SegRNN has emerged as a leading RNN-based model tailored for long-term series forecasting, demonstrating state-of-the-art performance while maintaining a streamlined architecture through innovative segmentation and parallel decoding techniques. Nevertheless, SegRNN has several limitations: its fixed segmentation disrupts data continuity and fails to effectively leverage information across different segments, the segmentation strategy employed by SegRNN does not fundamentally address the issue of information loss within the recurrent structure. To address these issues, we propose the ISMRNN method with three key enhancements: we introduce an implicit segmentation structure to decompose the time series and map it to segmented hidden states, resulting in denser information exchange during the segmentation phase. Additionally, we incorporate residual structures in the encoding layer to mitigate information loss within the recurrent structure. To extract information more effectively, we further integrate the Mamba architecture to enhance time series information extraction. Experiments on several real-world long time series forecasting datasets demonstrate that our model surpasses the performance of current state-of-the-art models.
Related papers
- Concrete Dense Network for Long-Sequence Time Series Clustering [4.307648859471193]
Time series clustering is fundamental in data analysis for discovering temporal patterns.
Deep temporal clustering methods have been trying to integrate the canonical k-means into end-to-end training of neural networks.
LoSTer is a novel dense autoencoder architecture for the long-sequence time series clustering problem.
arXiv Detail & Related papers (2024-05-08T12:31:35Z) - A Distance Correlation-Based Approach to Characterize the Effectiveness of Recurrent Neural Networks for Time Series Forecasting [1.9950682531209158]
We provide an approach to link time series characteristics with RNN components via the versatile metric of distance correlation.
We empirically show that the RNN activation layers learn the lag structures of time series well.
We also show that the activation layers cannot adequately model moving average and heteroskedastic time series processes.
arXiv Detail & Related papers (2023-07-28T22:32:08Z) - Disentangling Structured Components: Towards Adaptive, Interpretable and
Scalable Time Series Forecasting [52.47493322446537]
We develop a adaptive, interpretable and scalable forecasting framework, which seeks to individually model each component of the spatial-temporal patterns.
SCNN works with a pre-defined generative process of MTS, which arithmetically characterizes the latent structure of the spatial-temporal patterns.
Extensive experiments are conducted to demonstrate that SCNN can achieve superior performance over state-of-the-art models on three real-world datasets.
arXiv Detail & Related papers (2023-05-22T13:39:44Z) - Stock Trend Prediction: A Semantic Segmentation Approach [3.718476964451589]
We present a novel approach to predict long-term daily stock price change trends with fully 2D-convolutional encoder-decoders.
Our hierarchical structure of CNNs makes it capable of capturing both long and short-term temporal relationships effectively.
arXiv Detail & Related papers (2023-03-09T01:29:09Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
FormerTime is a hierarchical representation model for improving the classification capacity for the multivariate time series classification task.
It exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism.
arXiv Detail & Related papers (2023-02-20T07:46:14Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
Implicit neural representations (INRs) have recently emerged as a powerful tool that provides an accurate and resolution-independent encoding of data.
In this paper, we analyze the representation of time series using INRs, comparing different activation functions in terms of reconstruction accuracy and training convergence speed.
We propose a hypernetwork architecture that leverages INRs to learn a compressed latent representation of an entire time series dataset.
arXiv Detail & Related papers (2022-08-11T14:05:51Z) - Pre-training Enhanced Spatial-temporal Graph Neural Network for
Multivariate Time Series Forecasting [13.441945545904504]
We propose a novel framework, in which STGNN is Enhanced by a scalable time series Pre-training model (STEP)
Specifically, we design a pre-training model to efficiently learn temporal patterns from very long-term history time series.
Our framework is capable of significantly enhancing downstream STGNNs, and our pre-training model aptly captures temporal patterns.
arXiv Detail & Related papers (2022-06-18T04:24:36Z) - Recurrence-in-Recurrence Networks for Video Deblurring [58.49075799159015]
State-of-the-art video deblurring methods often adopt recurrent neural networks to model the temporal dependency between the frames.
In this paper, we propose recurrence-in-recurrence network architecture to cope with the limitations of short-ranged memory.
arXiv Detail & Related papers (2022-03-12T11:58:13Z) - Towards Generating Real-World Time Series Data [52.51620668470388]
We propose a novel generative framework for time series data generation - RTSGAN.
RTSGAN learns an encoder-decoder module which provides a mapping between a time series instance and a fixed-dimension latent vector.
To generate time series with missing values, we further equip RTSGAN with an observation embedding layer and a decide-and-generate decoder.
arXiv Detail & Related papers (2021-11-16T11:31:37Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.