論文の概要: The Missing Link: Allocation Performance in Causal Machine Learning
- arxiv url: http://arxiv.org/abs/2407.10779v1
- Date: Mon, 15 Jul 2024 14:57:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 14:39:57.540892
- Title: The Missing Link: Allocation Performance in Causal Machine Learning
- Title(参考訳): 失敗リンク:因果機械学習におけるアロケーション性能
- Authors: Unai Fischer-Abaigar, Christoph Kern, Frauke Kreuter,
- Abstract要約: 一つのCATEモデルの性能が、さまざまな意思決定シナリオで大きく異なることを示す。
分布シフトなどの課題が予測やアロケーションに与える影響を明らかにする。
- 参考スコア(独自算出の注目度): 7.093692674858259
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated decision-making (ADM) systems are being deployed across a diverse range of critical problem areas such as social welfare and healthcare. Recent work highlights the importance of causal ML models in ADM systems, but implementing them in complex social environments poses significant challenges. Research on how these challenges impact the performance in specific downstream decision-making tasks is limited. Addressing this gap, we make use of a comprehensive real-world dataset of jobseekers to illustrate how the performance of a single CATE model can vary significantly across different decision-making scenarios and highlight the differential influence of challenges such as distribution shifts on predictions and allocations.
- Abstract(参考訳): 自動意思決定システム(ADM)は、社会福祉や医療といった様々な問題領域に展開されている。
最近の研究は、ADMシステムにおける因果MLモデルの重要性を強調している。
これらの課題が特定の下流意思決定タスクのパフォーマンスに与える影響についての研究は限られている。
このギャップに対処するため、私たちは、ひとつのCATEモデルのパフォーマンスが、さまざまな意思決定シナリオで大きく異なる可能性があることを示すために、求職者の包括的な実世界のデータセットを活用し、予測やアロケーションに対する分散シフトのような課題の差分の影響を強調します。
関連論文リスト
- Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
我々は,大規模言語モデル(LLM)を具体的意思決定のために評価することを目指している。
既存の評価は最終的な成功率にのみ依存する傾向がある。
本稿では,様々なタスクの形式化を支援する汎用インタフェース (Embodied Agent Interface) を提案する。
論文 参考訳(メタデータ) (2024-10-09T17:59:00Z) - Most Influential Subset Selection: Challenges, Promises, and Beyond [9.479235005673683]
我々は,最も集団的影響の大きいトレーニングサンプルのサブセットを特定することを目的とした,MISS(Most Influential Subset Selection)問題について検討する。
我々は、MISにおける一般的なアプローチを包括的に分析し、その強みと弱点を解明する。
本稿では,これらを反復的に適用した適応バージョンが,試料間の相互作用を効果的に捕捉できることを実証する。
論文 参考訳(メタデータ) (2024-09-25T20:00:23Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - MARS: Benchmarking the Metaphysical Reasoning Abilities of Language Models with a Multi-task Evaluation Dataset [50.36095192314595]
大きな言語モデル(LLM)は、一般化可能な推論能力を持つ意識的なエージェントとして機能する。
この能力は、イベントにおける無限の可能な変更をモデル化する複雑さのために、まだ探索されていない。
我々は,各ステップに対応する3つのタスクからなる最初のベンチマークMARSを紹介する。
論文 参考訳(メタデータ) (2024-06-04T08:35:04Z) - On Task Performance and Model Calibration with Supervised and
Self-Ensembled In-Context Learning [71.44986275228747]
In-context Learning (ICL) は、近年の大規模言語モデル(LLM)の進歩により、効率的なアプローチとなっている。
しかし、両方のパラダイムは、過信の批判的な問題(すなわち、誤校正)に苦しむ傾向にある。
論文 参考訳(メタデータ) (2023-12-21T11:55:10Z) - Some challenges of calibrating differentiable agent-based models [0.0]
エージェントベースモデル(ABM)は複雑なシステムのモデリングと推論に有望なアプローチである。
それらの応用は、その複雑さ、離散的性質、パラメータ推論と最適化タスクの実行の難しさによって妨げられている。
論文 参考訳(メタデータ) (2023-07-03T15:07:10Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Context matters for fairness -- a case study on the effect of spatial
distribution shifts [10.351739012146378]
本稿では,新たに発表された米国国勢調査データセットのケーススタディについて述べる。
空間分布の変化がモデルの性能および公平性にどのように影響するかを示す。
我々の研究は、別の文脈にモデルをデプロイする前に、分散シフトに対する堅牢性が必要であることを示唆している。
論文 参考訳(メタデータ) (2022-06-23T01:09:46Z) - Seeing Differently, Acting Similarly: Imitation Learning with
Heterogeneous Observations [126.78199124026398]
多くの実世界の模倣学習タスクでは、デモレーターと学習者は異なるが完全な観察空間で行動しなければならない。
本研究では、上記の学習問題を異種観察学習(HOIL)としてモデル化する。
本稿では,重要度重み付け,拒否学習,アクティブクエリに基づくIWREアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-17T05:44:04Z) - RDMSim: An Exemplar for Evaluation and Comparison of Decision-Making
Techniques for Self-Adaptation [1.846852980615761]
RDMSimは、研究者が自己適応のための意思決定技術を評価および比較できるようにする。
模範者の焦点は、リモートデータミラーリングに関連するドメインの問題である。
論文 参考訳(メタデータ) (2021-05-05T11:03:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。