Learning biologically relevant features in a pathology foundation model using sparse autoencoders
- URL: http://arxiv.org/abs/2407.10785v3
- Date: Mon, 16 Dec 2024 21:02:15 GMT
- Title: Learning biologically relevant features in a pathology foundation model using sparse autoencoders
- Authors: Nhat Minh Le, Ciyue Shen, Neel Patel, Chintan Shah, Darpan Sanghavi, Blake Martin, Alfred Eng, Daniel Shenker, Harshith Padigela, Raymond Biju, Syed Ashar Javed, Jennifer Hipp, John Abel, Harsha Pokkalla, Sean Grullon, Dinkar Juyal,
- Abstract summary: We trained a Sparse Autoencoder on the embeddings of a pathology pretrained foundation model.<n>We found that Sparse Autoencoder features represent interpretable and monosemantic biological concepts.
- Score: 2.5919097694815365
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Pathology plays an important role in disease diagnosis, treatment decision-making and drug development. Previous works on interpretability for machine learning models on pathology images have revolved around methods such as attention value visualization and deriving human-interpretable features from model heatmaps. Mechanistic interpretability is an emerging area of model interpretability that focuses on reverse-engineering neural networks. Sparse Autoencoders (SAEs) have emerged as a promising direction in terms of extracting monosemantic features from polysemantic model activations. In this work, we trained a Sparse Autoencoder on the embeddings of a pathology pretrained foundation model. We found that Sparse Autoencoder features represent interpretable and monosemantic biological concepts. In particular, individual SAE dimensions showed strong correlations with cell type counts such as plasma cells and lymphocytes. These biological representations were unique to the pathology pretrained model and were not found in a self-supervised model pretrained on natural images. We demonstrated that such biologically-grounded monosemantic representations evolved across the model's depth, and the pathology foundation model eventually gained robustness to non-biological factors such as scanner type. The emergence of biologically relevant SAE features was generalizable to an out-of-domain dataset. Our work paves the way for further exploration around interpretable feature dimensions and their utility for medical and clinical applications.
Related papers
- CytoFM: The first cytology foundation model [3.591868126270513]
We introduce CytoFM, the first self-supervised foundation model for digital Cytology.
We pretrain CytoFM on a diverse collection of datasets to learn robust, transferable representations.
Our results demonstrate that CytoFM performs better on two out of three downstream tasks than existing foundation models pretrained on histopathology.
arXiv Detail & Related papers (2025-04-18T01:37:50Z) - PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.
Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.
Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - Biomedical Foundation Model: A Survey [84.26268124754792]
Foundation models are large-scale pre-trained models that learn from extensive unlabeled datasets.
These models can be adapted to various applications such as question answering and visual understanding.
This survey explores the potential of foundation models across diverse domains within biomedical fields.
arXiv Detail & Related papers (2025-03-03T22:42:00Z) - MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention [52.106879463828044]
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease.
We present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention.
Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance.
arXiv Detail & Related papers (2025-03-01T07:02:30Z) - Causal Representation Learning from Multimodal Biomedical Observations [57.00712157758845]
We develop flexible identification conditions for multimodal data and principled methods to facilitate the understanding of biomedical datasets.
Key theoretical contribution is the structural sparsity of causal connections between modalities.
Results on a real-world human phenotype dataset are consistent with established biomedical research.
arXiv Detail & Related papers (2024-11-10T16:40:27Z) - Multiplex Imaging Analysis in Pathology: a Comprehensive Review on Analytical Approaches and Digital Toolkits [0.7968706282619793]
Multi multiplexed imaging allows for simultaneous visualization of multiple biomarkers in a single section.
Data from multiplexed imaging requires sophisticated computational methods for preprocessing, segmentation, feature extraction, and spatial analysis.
PathML is an AI-powered platform that streamlines image analysis, making complex interpretation accessible for clinical and research settings.
arXiv Detail & Related papers (2024-11-01T18:02:41Z) - Histopathology image embedding based on foundation models features aggregation for patient treatment response prediction [0.0]
We propose a novel methodology for predicting Diffuse Large B-Cell Lymphoma patients treatment response from Whole Slide Images.
Our method exploits several foundation models as feature extractors to obtain a local representation of the image corresponding to a small region of the tissue.
Our experimental study conducted on a dataset of 152 patients, shows the promising results of our methodology.
arXiv Detail & Related papers (2024-07-23T13:31:12Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
We develop a generalist segmentation model that combines anatomical and pathological information, aiming to enhance the segmentation accuracy of pathological features.
Our Anatomy-Pathology Exchange (APEx) training utilizes a query-based segmentation transformer which decodes a joint feature space into query-representations for human anatomy.
In doing so, we are able to report the best results across the board on FDG-PET-CT and Chest X-Ray pathology segmentation tasks with a margin of up to 3.3% as compared to strong baseline methods.
arXiv Detail & Related papers (2024-07-08T11:44:15Z) - PLUTO: Pathology-Universal Transformer [4.920983796208486]
We propose PathoLogy Universal TransfOrmer (PLUTO): a light-weight pathology FM that is pre-trained on a diverse dataset of 195 million image tiles.
We design task-specific adaptation heads that utilize PLUTO's output embeddings for tasks which span pathology scales.
We find that PLUTO matches or outperforms existing task-specific baselines and pathology-specific foundation models.
arXiv Detail & Related papers (2024-05-13T16:40:17Z) - Knowledge-enhanced Visual-Language Pretraining for Computational Pathology [68.6831438330526]
We consider the problem of visual representation learning for computational pathology, by exploiting large-scale image-text pairs gathered from public resources.
We curate a pathology knowledge tree that consists of 50,470 informative attributes for 4,718 diseases requiring pathology diagnosis from 32 human tissues.
arXiv Detail & Related papers (2024-04-15T17:11:25Z) - HistoSegCap: Capsules for Weakly-Supervised Semantic Segmentation of
Histological Tissue Type in Whole Slide Images [19.975420988169454]
Digital pathology involves converting physical tissue slides into high-resolution Whole Slide Images (WSIs)
Large histology slides with numerous microscopic fields pose challenges for visual search.
Computer Aided Diagnosis (CAD) systems offer visual assistance in efficiently examining WSIs and identifying diagnostically relevant regions.
arXiv Detail & Related papers (2024-02-16T17:44:11Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - Biologically-informed deep learning models for cancer: fundamental
trends for encoding and interpreting oncology data [0.0]
We provide a structured literature analysis focused on Deep Learning (DL) models used to support inference in cancer biology.
The work focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability.
arXiv Detail & Related papers (2022-07-02T12:11:35Z) - PathologyBERT -- Pre-trained Vs. A New Transformer Language Model for
Pathology Domain [2.3628956573813498]
Successful text mining of a large pathology database can play a critical role to advance 'big data' cancer research.
No pathology-specific language space exist to support the rapid data-mining development in pathology space.
PathologyBERT is a pre-trained masked language model which was trained on 347,173 histopathology specimen reports.
arXiv Detail & Related papers (2022-05-13T20:42:07Z) - Mapping the landscape of histomorphological cancer phenotypes using
self-supervised learning on unlabeled, unannotated pathology slides [9.27127895781971]
Histomorphological Phenotype Learning operates via the automatic discovery of discriminatory image features in small image tiles.
Tiles are grouped into morphologically similar clusters which constitute a library of histomorphological phenotypes.
arXiv Detail & Related papers (2022-05-04T08:06:55Z) - Self-Supervised Vision Transformers Learn Visual Concepts in
Histopathology [5.164102666113966]
We conduct a search for good representations in pathology by training a variety of self-supervised models with validation on a variety of weakly-supervised and patch-level tasks.
Our key finding is in discovering that Vision Transformers using DINO-based knowledge distillation are able to learn data-efficient and interpretable features in histology images.
arXiv Detail & Related papers (2022-03-01T16:14:41Z) - HistoCartography: A Toolkit for Graph Analytics in Digital Pathology [0.6299766708197883]
HistoCartography is a standardized python API with necessary preprocessing, machine learning and explainability tools to facilitate graph-analytics in computational pathology.
We have benchmarked the computational time and performance on multiple datasets across different imaging types and histopathology tasks.
arXiv Detail & Related papers (2021-07-21T13:34:14Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.