HistoSegCap: Capsules for Weakly-Supervised Semantic Segmentation of
Histological Tissue Type in Whole Slide Images
- URL: http://arxiv.org/abs/2402.10851v1
- Date: Fri, 16 Feb 2024 17:44:11 GMT
- Title: HistoSegCap: Capsules for Weakly-Supervised Semantic Segmentation of
Histological Tissue Type in Whole Slide Images
- Authors: Mobina Mansoori, Sajjad Shahabodini, Jamshid Abouei, Arash Mohammadi,
Konstantinos N. Plataniotis
- Abstract summary: Digital pathology involves converting physical tissue slides into high-resolution Whole Slide Images (WSIs)
Large histology slides with numerous microscopic fields pose challenges for visual search.
Computer Aided Diagnosis (CAD) systems offer visual assistance in efficiently examining WSIs and identifying diagnostically relevant regions.
- Score: 19.975420988169454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital pathology involves converting physical tissue slides into
high-resolution Whole Slide Images (WSIs), which pathologists analyze for
disease-affected tissues. However, large histology slides with numerous
microscopic fields pose challenges for visual search. To aid pathologists,
Computer Aided Diagnosis (CAD) systems offer visual assistance in efficiently
examining WSIs and identifying diagnostically relevant regions. This paper
presents a novel histopathological image analysis method employing Weakly
Supervised Semantic Segmentation (WSSS) based on Capsule Networks, the first
such application. The proposed model is evaluated using the Atlas of Digital
Pathology (ADP) dataset and its performance is compared with other
histopathological semantic segmentation methodologies. The findings underscore
the potential of Capsule Networks in enhancing the precision and efficiency of
histopathological image analysis. Experimental results show that the proposed
model outperforms traditional methods in terms of accuracy and the mean
Intersection-over-Union (mIoU) metric.
Related papers
- HistoGym: A Reinforcement Learning Environment for Histopathological Image Analysis [9.615399811006034]
HistoGym aims to foster whole slide image diagnosis by mimicking the real-life processes of doctors.
We offer various scenarios for different organs and cancers, including both WSI-based and selected region-based scenarios.
arXiv Detail & Related papers (2024-08-16T17:19:07Z) - Scribble-Based Interactive Segmentation of Medical Hyperspectral Images [4.675955891956077]
This work introduces a scribble-based interactive segmentation framework for medical hyperspectral images.
The proposed method utilizes deep learning for feature extraction and a geodesic distance map generated from user-provided scribbles.
arXiv Detail & Related papers (2024-08-05T12:33:07Z) - Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
Recent advances in artificial intelligence (AI) are revolutionizing medical imaging and computational pathology.
A constant challenge in the analysis of digital Whole Slide Images (WSIs) is the problem of aggregating tens of thousands of tile-level image embeddings to a slide-level representation.
This study conducts a benchmarking analysis of ten slide-level aggregation techniques across nine clinically relevant tasks.
arXiv Detail & Related papers (2024-07-10T17:00:57Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
We develop a generalist segmentation model that combines anatomical and pathological information, aiming to enhance the segmentation accuracy of pathological features.
Our Anatomy-Pathology Exchange (APEx) training utilizes a query-based segmentation transformer which decodes a joint feature space into query-representations for human anatomy.
In doing so, we are able to report the best results across the board on FDG-PET-CT and Chest X-Ray pathology segmentation tasks with a margin of up to 3.3% as compared to strong baseline methods.
arXiv Detail & Related papers (2024-07-08T11:44:15Z) - A self-supervised framework for learning whole slide representations [52.774822784847565]
We present Slide Pre-trained Transformers (SPT) for gigapixel-scale self-supervision of whole slide images.
We benchmark SPT visual representations on five diagnostic tasks across three biomedical microscopy datasets.
arXiv Detail & Related papers (2024-02-09T05:05:28Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
Optical Coherence Tomography Angiography is a promising tool for detecting Alzheimer's disease (AD) by imaging the retinal microvasculature.
We propose a novel deep-learning framework called Polar-Net to provide interpretable results and leverage clinical prior knowledge.
We show that Polar-Net outperforms existing state-of-the-art methods and provides more valuable pathological evidence for the association between retinal vascular changes and AD.
arXiv Detail & Related papers (2023-11-10T11:49:49Z) - Glioma subtype classification from histopathological images using
in-domain and out-of-domain transfer learning: An experimental study [9.161480191416551]
We compare various transfer learning strategies and deep learning architectures for computer-aided classification of adult-type diffuse gliomas.
A semi-supervised learning approach is proposed, where the fine-tuned models are utilized to predict the labels of unannotated regions of the whole slide images.
The models are subsequently retrained using the ground-truth labels and weak labels determined in the previous step, providing superior performance in comparison to standard in-domain transfer learning.
arXiv Detail & Related papers (2023-09-29T13:22:17Z) - A Computer-Aided Diagnosis System for Breast Pathology: A Deep Learning
Approach with Model Interpretability from Pathological Perspective [6.583997407109283]
We develop a computer-aided diagnosis (CAD) system using deep learning approaches for lesion detection and classification.
The deep features being distinguishing in classification from the convolutional neural networks (CNN) are demonstrated in this study to provide comprehensive interpretability.
arXiv Detail & Related papers (2021-08-05T14:43:59Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.