Graphusion: Leveraging Large Language Models for Scientific Knowledge Graph Fusion and Construction in NLP Education
- URL: http://arxiv.org/abs/2407.10794v1
- Date: Mon, 15 Jul 2024 15:13:49 GMT
- Title: Graphusion: Leveraging Large Language Models for Scientific Knowledge Graph Fusion and Construction in NLP Education
- Authors: Rui Yang, Boming Yang, Sixun Ouyang, Tianwei She, Aosong Feng, Yuang Jiang, Freddy Lecue, Jinghui Lu, Irene Li,
- Abstract summary: We introduce Graphusion, a zero-shot knowledge graph framework from free text.
The core fusion module provides a global view of triplets, incorporating entity merging, conflict resolution, and novel triplet discovery.
Our evaluation demonstrates that Graphusion surpasses supervised baselines by up to 10% in accuracy on link prediction.
- Score: 14.368011453534596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graphs (KGs) are crucial in the field of artificial intelligence and are widely applied in downstream tasks, such as enhancing Question Answering (QA) systems. The construction of KGs typically requires significant effort from domain experts. Recently, Large Language Models (LLMs) have been used for knowledge graph construction (KGC), however, most existing approaches focus on a local perspective, extracting knowledge triplets from individual sentences or documents. In this work, we introduce Graphusion, a zero-shot KGC framework from free text. The core fusion module provides a global view of triplets, incorporating entity merging, conflict resolution, and novel triplet discovery. We showcase how Graphusion could be applied to the natural language processing (NLP) domain and validate it in the educational scenario. Specifically, we introduce TutorQA, a new expert-verified benchmark for graph reasoning and QA, comprising six tasks and a total of 1,200 QA pairs. Our evaluation demonstrates that Graphusion surpasses supervised baselines by up to 10% in accuracy on link prediction. Additionally, it achieves average scores of 2.92 and 2.37 out of 3 in human evaluations for concept entity extraction and relation recognition, respectively.
Related papers
- Graphusion: A RAG Framework for Knowledge Graph Construction with a Global Perspective [13.905336639352404]
This work introduces Graphusion, a zero-shot Knowledge Graph framework from free text.
It contains three steps: in Step 1, we extract a list of seed entities using topic modeling to guide the final KG includes the most relevant entities.
In Step 2, we conduct candidate triplet extraction using LLMs; in Step 3, we design the novel fusion module that provides a global view of the extracted knowledge.
arXiv Detail & Related papers (2024-10-23T06:54:03Z) - GraCoRe: Benchmarking Graph Comprehension and Complex Reasoning in Large Language Models [22.705728671135834]
This paper presents GraCoRe, a benchmark for systematically assessing Large Language Models' graph comprehension and reasoning.
GraCoRe uses a three-tier hierarchical taxonomy to categorize and test models on pure graph and heterogeneous graphs.
Key findings reveal that semantic enrichment enhances reasoning performance, node ordering impacts task success, and the ability to process longer texts does not necessarily improve graph comprehension or reasoning.
arXiv Detail & Related papers (2024-07-03T09:12:38Z) - G-SAP: Graph-based Structure-Aware Prompt Learning over Heterogeneous Knowledge for Commonsense Reasoning [8.02547453169677]
We propose a novel Graph-based Structure-Aware Prompt Learning Model for commonsense reasoning, named G-SAP.
In particular, an evidence graph is constructed by integrating multiple knowledge sources, i.e. ConceptNet, Wikipedia, and Cambridge Dictionary.
The results reveal a significant advancement over the existing models, especially, with 6.12% improvement over the SoTA LM+GNNs model on the OpenbookQA dataset.
arXiv Detail & Related papers (2024-05-09T08:28:12Z) - Exploring Large Language Models for Knowledge Graph Completion [17.139056629060626]
We consider triples in knowledge graphs as text sequences and introduce an innovative framework called Knowledge Graph LLM.
Our technique employs entity and relation descriptions of a triple as prompts and utilizes the response for predictions.
Experiments on various benchmark knowledge graphs demonstrate that our method attains state-of-the-art performance in tasks such as triple classification and relation prediction.
arXiv Detail & Related papers (2023-08-26T16:51:17Z) - Text-Augmented Open Knowledge Graph Completion via Pre-Trained Language
Models [53.09723678623779]
We propose TAGREAL to automatically generate quality query prompts and retrieve support information from large text corpora.
The results show that TAGREAL achieves state-of-the-art performance on two benchmark datasets.
We find that TAGREAL has superb performance even with limited training data, outperforming existing embedding-based, graph-based, and PLM-based methods.
arXiv Detail & Related papers (2023-05-24T22:09:35Z) - IRT2: Inductive Linking and Ranking in Knowledge Graphs of Varying Scale [1.3621712165154805]
We address the challenge of building domain-specific knowledge models for industrial use cases.
Our focus is on inductive link prediction models as a basis for practical tools.
arXiv Detail & Related papers (2023-01-02T15:19:21Z) - A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic,
and Multimodal [57.8455911689554]
Knowledge graph reasoning (KGR) aims to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs)
It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering, recommendation systems, and etc.
arXiv Detail & Related papers (2022-12-12T08:40:04Z) - Deep Bidirectional Language-Knowledge Graph Pretraining [159.9645181522436]
DRAGON is a self-supervised approach to pretraining a deeply joint language-knowledge foundation model from text and KG at scale.
Our model takes pairs of text segments and relevant KG subgraphs as input and bidirectionally fuses information from both modalities.
arXiv Detail & Related papers (2022-10-17T18:02:52Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - Structure-Augmented Text Representation Learning for Efficient Knowledge
Graph Completion [53.31911669146451]
Human-curated knowledge graphs provide critical supportive information to various natural language processing tasks.
These graphs are usually incomplete, urging auto-completion of them.
graph embedding approaches, e.g., TransE, learn structured knowledge via representing graph elements into dense embeddings.
textual encoding approaches, e.g., KG-BERT, resort to graph triple's text and triple-level contextualized representations.
arXiv Detail & Related papers (2020-04-30T13:50:34Z) - Benchmarking Graph Neural Networks [75.42159546060509]
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs.
For any successful field to become mainstream and reliable, benchmarks must be developed to quantify progress.
GitHub repository has reached 1,800 stars and 339 forks, which demonstrates the utility of the proposed open-source framework.
arXiv Detail & Related papers (2020-03-02T15:58:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.